
A D-A 273 355 USAdERL Technical Report FF-93/11

US Army Corps
of Engineers
Constructlon Engineering
Research Laboratories

Definition and Implementation of the
Integrated Modular Persistent Object
RepresentationTranslator (IMPORT)
by " D~TIC ,
Charles E. Herring
Joseph Teo ELECTE
Vijay Karamcheti
R. Alan Whitehurst L O
Biju L. Kalathil
Heien-Kun Chiang
John Pietrzak A
The Integrated Modular Persistent Object Representation
Translator (IMPORT) is a programming language devel-
oped as part the Integrated Systems Language Environ-
ment (ISLE), and intended to provide software engineer-
ing support for modeling and simulation of complex
ecological systems such as the modem battlefield.
IMPORT integrates a number of software technologies:
object-oriented imperative programming, knowledge-
based declarative programming, process-based simula-
tion, and persistent object storage.

IMPORT manages programs as data, like a CAD system
manipulates design artifacts. It is implemented as an
object-oriented framework that models the language and
supports persistent object storage of an intermediate
representation in the form of abstract syntax trees,
symbol tables, and associated structures. The parser
translates input into this intermediate representation, and
subsequent operations on these artifacts occur through
the classes of the framework. Facilities for editing,
browsing, compiling, version control, interpreting/debug-
ging, optimizing, code generating, and profiling are 93.29352
provided based on the framework. This report defines the 93 -29352
language, describes its implementation, and outlines re- UM
search directions within the context of the project.

Approved for public release; distribution is unlimited.

'93 11 30 054

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report (TR) FF-93/1 1, Definition and Implementation of the
Integrated Modular Persistent Object Representation Translator (IMPORT)

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL.
As user of this report, your customer comments will provide USACERL with information essential for
improving future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for
which report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure,
management procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars
saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material:

f. Relates to Area of Interest:

g. Did the report meet your expectations?

h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future
reports of this type more respt nsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions

or discuss the topic, please fill in the following information.

Name:

Telephone Number:.

Organization Address:

6. Please mail the completed form to:

Department of the Army
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATN: CECER-IMT
P.O. Box 9005
Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE I .
Pttalg mm d tn Is cr In~oma•fl q mm mavaws miae 1 h p . w g ft *S. ow =r oorai =•Q aduomn Unu•caimi mmmw

g~~w~~lg aid m dmMin SI ms eed. WW nnpen a idok W wrai"id ftnbaw cif~o Inmof n. Said OftuNiqug baftin~ orf w ai w espW Qrn ft
aatclsn of kikiaai, S 0 amolom %r rfn Vt hrdeun, Si wmhpo Hmftmmm Sai4m. Dhofm e lifr-nafn Operdumi. mwd R p on. 1215 J.mn
Davfis i b 1204IX, P*gso. VA 22202-430. aidladt~le CM.. i Iaqmg.S iddgsl.Papewoik Pa4iidumnP.os (070".IU). Waunlnon. DC 0.

1. AGENCY USE ONLY (Lam Bac) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

RESeptmbr 1993 Final
4. TITLE ANO SUBTITLE s. FUNDING NUMBERS

Definition and Implementation of the Integrated Modular Persistent Object 4A162784
Representation Translator (IMPORT) AT41

FZ-AV3
S. AUT40S)

Charles E. Herring, Joseph Teo, Vijay Karaincheti, R. Alan Whitehurst, Biju L.
Kalathil, Heien-Kun Chiang, and John Pietrzak

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Construction Engineering Research Laboratories (USACERL) REPORT NUMBER

P.O. Box 9005 TR-FF-93/l 1
Champaign, IL 61826-9005

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
Office of the Chief of Engineers AGENCY REPORT NUMBER
ATTN: DAEN-ZCM
Room IE682 The Pentagon
Washington, DC 20310-2600

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA
22161.

12L. DISTRIBUTIONMAVAILABIL•UY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Makman 200 words)

The Integrated Modular Persistent Object Representation Translator (IMPORT) is a programming language
developed as part the Integrated Systems Language Environment (ISLE), and intended to provide software
engineering support for modeling and simulation of complex ecological systems such as the modem battlefield.
IMPORT integrates a number of software technologies: object-oriented imperative programming,
knowledge-based declarative programming, process-based simulation, and persistent object storage,

IMPORT manages programs as data, like a CAD system manipulates design artifacts. It is implemented as an
object-oriented framework that models the language and supports persistent object storage of an intermediate
representation in the form of abstract syntax trees, symbol tables, and associated structures. The parser translates
input into this intermediate representation, and subsequent operations on these artifacts occur through the classes
of the framework. Facilities for editing, browsing, compiling, version control, interpreting/debugging, optimizing,
code generating, and profiling are provided based on the framework. This report defines the language, describes
its implementation, and outlines research directions within the context of the project.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Integrated Modular Persistent Object Representation Translator (IMPORT) 146
modeling simulation object-oriented programming 16. PRICE C
integrated systems language environment ecological systems

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CSIFICATION 20. uMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 754o01 4.-0o Stmndm Form 296 (Rev. 2-81)
Piurnag by' AMS SM MSIl
21&102

FOREWORD

This study was conducted for the Office of the Chief of Engineers (OCE), Military Engineering and
Topography Division, under Project 4A 162784AT41, "Military Facilities Engineering Technology"; Work
Unit FZ-AV3, "Integrated Modular Persistent Object Representation Translator (IMPORT)." The technical
monitor was David Loental, U.S Army Engineer School (USAES-DCD).

This research was done by the Facility Management Division (FF), Infrastructure Laboratory (FL),
U.S. Army Construction Engineering Research Laboratories (USACERL). Gratitude is expressed to
Walter Hollis, Deputy Undersecretary of the Army for Operations Research, and to the SimTech
Committee and the staff at the U.S. Army Model and Simulation Office, especially COL Gilbert Brauch,
Director. Dr. Janet H. Spoonamore is Acting Chief, CECER-FF, and Dr. Michael J. O'Connor is Chief,
CECER-FL. The USACERL technical editor was William J. Wolfe, Information Management Office.

LTC David J. Rehbein is Commander of USACERL and Dr. L.R. Shaffer is Director.

DT ZC Q TALI T l C Tr D a

Accesion For
NTIS CRA&I
DTIC TAB

U'lantO'nm.ced
Justification

By -

By

Disth ibution I

Availablity Codes

Avail and I or
Dist Special

A-

2

CONTENTS
Page

SF 298 1
FOREWORD 2
LIST OF FIGURES AND TABLES 4

INTRODUCTION ... 5
Background 5
Objective 6
Approach 6
Mode of Technology Transfer 7

2 LANGUAGE DEFINITION .. 8
Introduction 8
Definition of Terms 9
Modules 9
Types 11
Declarations 17
Method Bodies 18
Statements 18
Dynamic Memory Management 23
DISPOSE 24
Expressions 24
Built-in Procedures and Functions 28
Standard Library Modules 32

3 IMPLEMENTATION .. 34
Introduction 34
Modeling IMPORT: The Intermediate Representation 36
Lexer, Parser, and Semantic Controller 42
Code Generator, Compiling, and Linking 44
The DOME Runtime Interpreter Interface 46
Simulation Runtime Support 47
Generic Object-Oriented Database Interface 52

4 FUTURE WORK ... 56
Concept Development 56
Integrated Simulation Language Environment 57

5 SUMMARY ... 59

REFERENCES 59

APPENDIX A: IMPORT Context-Free Grammar Al
APPENDIX B: IMPORT Database Class Library BI
APPENDIX C: Software Engineering Classes C1
APPENDIX D: Generic Object-Oriented Database Interface Specification DI

DISTRIBUTION

3

FIGURES

Number Page

I Relationships of IMPORT Modules 9

2 Effect of Return of QUERY Invocation On Given Parameters 27

3 IMPORT Components and Their Relationships 35

4 Modeling Software With Objects 36

5 OMT Diagram of SEE Classes 37

6 Class Diagram of the IdModule Class 38

7 Class Diagram of id_Class 38

8 Class Diagram of idMethod 39

9 Node in the Abstract Syntax Tree 39

10 Class Diagram of ast_node 40

11 A Block Node With Declaration Object 40

12 The type e- Aession Class 41

13 The Declaration and Scope Classes 41

14 The Symtab Class 43

15 Relation of Symtab, Scope, and symtab.entry Classes 43

16 The symtab-entry Class 44

17 Components of the Analysis Phase 45

18 The id_semantic_controller Class 46

19 Overall Structure of the Runtime System 50

20 Components of the ISLE Architecture 57

TABLES

1 Operator Associativity by Decreasing Priority 24

2 Database Classes 33

4

DEFINITION AND IMPLEMENTATION OF THE INTEGRATED
MODULAR OBJECT REPRESENTATION TRANSLATOR (IMPORT)

I INTRODUCTION

Background

Scientific and engineering disciplines, from computer science to operations research, have long used
computer simulations to develop models that help analysts understand, predict, and control complex
systems. Over time, a large body of knowledge, methodologies, and software tools have been developed
for domiain specifics and to meet general purpose needs. These approaches typically rely on the
application of a single software technology, such as imperative programming, to derive a software system
the sole function of which is simulation. This approach has been effective for simulation of isolated
systems.

Over the past two decades, many efforts have been made to develop large-scale simulations spanning
many levels of system resolution, e.g., the combat models developed by operations researchers in support
of defense requirements (Davis and Huber 1992). These efforts to develop simulations of large parts of
reality have used most software technologies and techniques (Herring, Wallace, and Whitehurst 1991).
For example, declarative programming is typically used to model human decisionmaking, while, for
efficiency, static portions of models are written in imperative languages. However, most expert system
shells are designed as standalone packages, providing only external interfaces to other programming
systems. Other similarly designed software technologies cannot address modeling and simulation in a
consistent and integrated manner. Recent Advanced Research Projects Agency (ARPA) and Department
of Defense (DOD) initiatives have expressed goals far beyond the use of analytical simulations as
single-user tools (DA 1992, Director of Defense Research and Engineering 1992a, 1992b). These
initiatives have piloted research on Distributed Interactive Simulation (DIS) to use virtual reality for
training, hardware prototyping and evaluation, as well as for analytical purposes.

In recognition of the trend toward obje'-*-oriented progrmmming and its appwopriateness for modeling
and simulation, the U.S. Army sponsored the development of an object-oriented programming language
for simulation. In 1988, this project began to investigate the integration of modem software and hardware
architectures to support large-scale simulation. This resulted in the U.S. Army ModSim, Version 1.0, the
modular simulation language (Herring 1990). ModSim is a general-purpose fully object-oriented
programming language based on Modula-2, which provides strong typing and modularity for programming
in the large (Wirth 1984). ModSim also provides an object data type and integrates process-based
discrete-event simulation with objects. Methods of objects are asynchionous threads of execution and the
language provides primitives for passing simulation time and for synchronization.

As a research test bed, a combat model was developed using ModSim to experiment with the
application of software technologies and techniques. The Model-View-Controller framework of
SMALLTALK (Krasner 1988) was used as a guide to designing both the global and local architecture of
the model. From a study of existing models and knowledge of emerging software capabilities, two
requirements became evident: (1) the need for declarative programming to model complex decision-
making, and (2) the need for consistent object storage for model management. Work on these
requirements resulted in the ModLog (modular logic) declarative programming language (Whitehurst 1991,
1992), and Persistent ModSim (Herring 1991, 1993).

5

Based on experience with these two languages, and with other prototypes during applications
development, a new language was designed and implemented to provide full integration of the software
technologies identified to support general modeling and simulation, the IMPORT/DOME language system.
IMPORT/DOME is one of a number of tools that comprise the Integrated Simulation Language
Environment (ISLE). The tools in the ISLE environment interact with the persistent object repository,
which stores information about the class hierarchy, the programs under development, and the results of
program execution-all at the object-level of granularity (as opposed to the file, or function-level granu-
larities that exist in most systems). All the tools in ISLE interact with the object repository and operate
from the intermediate form of IMPORT/DOME programs.

Objective

The objective of this work was to develop an integrated application of an object-oriented, imperative
and declarative programming language that combined process-based discrete-event simulation and per-
sistent object storage to address large-scale, complex systems modeling and simulation.

Approach

IMPORT is a direct descendent of ModSim, and Persistent ModSim is a declarative language
extension to ModSim, based on PROLOG, which is a language developed for theorem proving and
artificial intelligence applications. Persistent ModSim differs from PROLOG in that it was intended to
provided intelligent decisionmaking support to objects while embedded in a simulation; it is designed for
solving problems that involve objects and the relationships between objects. The Persistent ModSim
extension to ModSim consists of a language for specifying declarative rule bases, an object-oriented
interpreter for the language that can be inherited by objects, and a facility for "binding" knowledge-base
objects to the imperative objects in the simulation.

Persistent ModSim is a version of ModSim integrated with a commercial object-oriented database.
The approach taken to provide ModSim with persistent object storage capabilities was quite straightfor-
ward. Two changes were required in the syntax: (1) the NEWOBJ primitive was extended to include an
optional second parameter, which is an object reference to a database, configuration, or segment. This
permits specification of object instance allocation in the persistent object store; (2) a TRANSACTION
statement was introduced to provide for short term database transaction management. This was necessary
to provide multi-user access to the same database files. Next a set of classes were developed to provide
access to the underlying database functionality, including: database, database root, collection,
configuration, workspace, and segment. As the object-oriented database supports a C language library
interface and is implemented as a translator to C, minor changes in the C code generation provide for
interfacing to the database.

IMPORT differs significantly from ModSim in that it was specifically designed for:

I. A higher degree of integration and consistency with the syntax and semantics of the declarative
complementary language.

2. Enhancement of the language with new constructs and removal of those deemed unnecessary.

3. An implementation based on the persistent object repository, providing for storage of the
intermediate object representation and versioning.

6

IMPORT provides for intermodule-type definition visibility, and is integrated in several ways: (1) it
provides for the integrated application of object-oriented imperative programming and process-based
simulation as in the model; (2) it is integrated with DOME (as described below); (3) it is integrated in its
unique implementation, which provides for ,he development of an integrated set of software engineering
support tools. IMPORT has four mo&,d types: it separates interface specification and implementation,
for the INTERFACE module typc tur interfacing to other languages, and the KNOWLEDGE module for
integration with DOME.

Mode of Techrw'ogy Transfer

U.S. Army ModSim, Version 1.0 has been distributed to Government agencies and their contractors
along with a suite of example programs that aid in understanding the process-based simulation model of
ModSim and general object-oriented programming, as well a graphical class-hierarchy browser and an
editing/compilation management environment. It is anticipated that the completed program may be
distributed cooperatively through several particpating agencies: the Army Material Systems Analysis
Agency, the Defense Logistics Agency, and through contractors on the Advanced Research Project
Agency's next generation Distributed Interactive Simulation (DIS) War Breaker (Booze-Allen-Hamilton,
Science Applications International Corporation, and The Applications Science Corporation).

7

2 LANGUAGE DEFINITION

This definition of the IMPORT language is provided for those who wish to study the details of the
language, primarily those interested irk evaluating it for use or as a reference for programming. A more
compact syntactic description, known as a context free grammar, is given in Appendix A.

Introduction

IMPORT retains the DEFINITION and IMPLEMENTATION modules of its predecessors, but has
the two new module types: the KNOWLEDGE module and the INTERFACE module. The KNOWL-
EDGE module is an approach to providing a more consistent integration between IMPORT and DOME.
It contains the declarative programming language statements of DOME as QUERY methods and relates
them to IMPORT objects defined in DEFINITION modules and to the method bodies that are located in
IMPLEMENTATION modules. The LIST type permits passing parameters between the IMPORT and
DOME languages. Enumeration type variables are also parameters to DOME QUERY methods.

ModSim introduced the ASK and TELL methods. TELL methods are asynchronous and have time-
passing statements (such as WAIT DURATION), whereas ASK methods are synchronous and cannot have
simulation time passing statements. IMPORT removes the restriction on ASK methods. If they have
time-passing statements, they will be synchronous, that is, the program will wait for their completion.
This permits passing parameters by reference to ASK methods. QUERY methods appear in object
definitions just as the imperative methods. IMPORT extends object methods over ModSim in a number
of ways. There are OPERATOR methods providing for operator overloading. (All methods may have
overloaded signatures with the exception of DESTRUCTOR methods.) Additionally, overloaded
CONSTRUCTOR methods may be specified through extended syntax of the NEW primitive.

The following have been removed from IMPORT: records, procedures, pointers, and subrange
types. The removal of procedures caused the MAIN module construct for specifying the starting point
of an application to become inconsistent, so it was replaced by the KEY statement, which is used to
specify applications. The KEY specifies an object to be created, and a method of the object that lwill
be the entry point of the application. KEYs are used by the interpreter and code generator to determine
the modules and objects involved in an application. A KEY statement has the form:

KEY keyname
FROM module-name CREATE class-name
INVOKE methodname (arguments).

Persistence in IMPORT is achieved as in Persistent ModSim through overloading the NEW function
and providing a set of classes that model a generic object-oriented database capability.

There are other minor, but convenient changes. For example, the language is case insensitive to
keywords, and identifiers cannot be keywords. The familiar C shorthand assignment operators (+=, -=,

etc.) are supported.

8

Definition of Terms

The following description uses conventional terminology. A variable is a place holder or location
for the result of a computation. The result of a computation must have a defined domain, called a type.
Variables must also have type, and can only hold values within that domain.

An identifier is a symbol declared as a name for a variable, a type, a constant, a class, etc. The
scope of a declaration is the region over which a declaration has efff-t IMPORT is a lexically scoped
language. An expression specifies a computation which produces a vaiue. The term repository refers to
the object-oriented database and associated schemas used to store IMPORT modules.

Modules

The highest level of abstraction characterizing IMPORT is the module. An IMPORT application
is a collection of modules and a key. There are four types of modules: DEFINITION modules,
IMPLEMENTATION modules, KNOWLEDGE modules, and INTERFACE modules.

Each Lv•PLEMENTATION module, KNOWLEDGE module, and INTERFACE module must have
a corresponding DEFINITION module of the same name. We may refer to these three modules
collectively as implementation modules. Each DEFINITION module must have either an IMPLEMENTA-
TION module, or a KNOWLEDGE module, or an INTERFACE module or any combination of the three.
The relation of modules in IMPORT is shown in Figure 1.

The declarations and IMPORTs made in a DEFINITION module are automatically included into the
corresponding IMPLEMENTATION, KNOWLEDGE, and INTERFACE modules.

Imlementation /Knowledge

Module

Figure 1. Relationships of IMPORT Modules.

9

DEFINITION Modules

A DEFINITION module contains type and class definitions. It also contains any global constants
that may be used in implementation modules. These modules define the interface to be used with the
implementation modules.

Data sharing between modules is achieved via an IMPORT statement, which is described in

Statements, p 18.

A DEFINITION module has the following form:

DEFINITION MODULE modulename;
IMPORT statements

type, constant and class definition list
END MODULE.

IMPLEMENTATION Modules

IMPLEMENTATION modules contain the implementation and body of the classes defined in the
DEFINITION module. These classes contain imperative (procedural) code.

An IMPLEMENTATION module has the following form:

IMPLEMENTATION MODULE modulename;
IMPORT statements

class, imperative and declarative code
class, imperative and declarative code

class, imperative and declarative code
END MODULE.

KNOWLEDGE Modules

KNOWLEDGE modules contain the initial state of the knowledge base for each class. A
KNOWLEDGE module may not have IMPORT statements in it. KNOWLEDGE modules are written in
the DOME declarative language and are interpretively executed at runtime. The KNOWLEDGE module
has the form:

KNOWLEDGE MODULE modulename;
class, knowledge base definition
class2 knowledge base definition

class, knowledge base definition

END MODULE.

INTERFACE Modules

INTERFACE modules provide a mechanism to interface with existing code bodies. Currently the
implementation supports C and C++, but it can readily be extended to other languages. Through this
facility the programmer can "wrapper" existing C library functionality into an IMPORT class and make

10

use of these classes as if the implementation was in IMPORT. That is, there are no restrictions on
inheritance and polymorphism.

INTERFACE MODULE modulename;
IMPORT statements

externalclass, language specific renaming
external_class2 language specific renaming

external_class. language specific renaming
END MODULE.

Keys

The key statement is used to specify applications. The key specifies an object to be created, and
a method of that object that will be the entry point of the application. There may be any number of keys
related to the IMPORT modules in a repository. Keys are stored in the repository with the corresponding
modules. Keys are used by the interpreter and code generator to determine the modules and objects
involved in an application.

The key statement may be put in a separate file, or within a file containing a DEFINITION
MODULE or an IMPLEMENTATION MODULE. If it occurs within such a file, it must occur outside
the MODULE-END MODULE block. A key must be given a unique name within the repository where
the suite of modules resides. A key declaration has the form:

KEY keyname:
FROM module name CREATE class-name INVOKE method name (arguments).

Types

IMPORT uses name equivalence to determine types. The only nonatomic types that IMPORT
allows are arrays, classes, and lists. Every expression has a statically-determined type.

Assignability and type compatibility is discussed in the individual subsections. Unless specifically
allowed, types are generally not assignment compatible.

Ordinal Types

There are two ordinal types: enumerations and integers. An enumeration type is declared as follows:

TYPE T = Iid,, id2 , id,);

In this case, id, will have an integer value of 0, id2 a value of 1, and id. a value of n-l.

The operators ORD and VAL convert between enumeration types and integers. In addition, the
predicate ODD returns TRUE when the value of an ordinal is odd. INC and DEC increment and
decrement the value of an ordinal respectively.

The identifiers idl, id4, etc. can be used to index arrays, and are compatible with integers in
relational operations, but not arithmetic operations or otherwise.

11

There are two predefined enumerated types: BOOLEAN, which is the enumeration I TRUE, FALSE }
and CHAR, which is an enumeration of 256 elements, generally the character set of the implementation.
CHR is defined on integers and converts an integer into the appropriate character.

The elements of the enumerations must be distinct. Declarations of the form:

TYPE CITRUS-FRUITS = (ORANGE, GRAPEFRUIT, LEMON);
TYPE BREAKFAST = (MILK, GRAPEFRUIT, TOAST, EGGS);

are not allowed, since GRAPEFRUIT appears twice. If they are in different modules, however, they can

be renamed to be distinct with the IMPORT statement.

Floating Point Types

At the present time, there is one floating point type REAL. The basic arithmetic and relational
operators apply to REALs.

The following built-in functions apply to REAL data-type:

FLOAT (i) Converts INTEGER to REAL.
TRUNC (r) Truncates a REAL into an INTEGER.

Strings

STRINGS are defined as a first-class data-type in IMPORT. The STRING stores characters and is
automatically and dynamically allocated and reallocated. STRINGs are indexed from 0 as are all arrays
in IMPORT. However, STRINGs are not indexable via the [] operator as are arrays.

The following built-in functions apply to STRINGs:

CHARTOSTR (c) Converts CHAR into STRING.

INTrOSTR (a) Converts INTEGER into STRING.

LOWER (str) Returns a STRING with all lower case letters.

POSITION (str1 , str2) Returns the position of str2 in strj.

REALTOSTR (r) Converts REAL into STRING.

SCHAR (str, pos) Returns the CHAR at position pos in str.

STRCAT (str,, str2 , str,) Produces a new STRING which is a concate-
nation of all the STRINGs str,, str2, ... , str,.

STRLEN (str) Returns the length of the STRING.

STRPUT (arg1, arg2 ,..... argj) Converts all the arguments argI, arg2
arg. into STRINGS and concatenates them
togther.

STRTOINT (str) Converts STRING into INTEGER.

STRTOREAL (str) Converts STRING into REAL.

12

SUBSTR (pos,, pos2, str) Returns the substring from pos, to pos2.

UPPER (str) Returns a STRING with all upper case letters.

The following built-in procedures apply to STRINGs:

INSERT (sirl, pos, str2) Inserts str2 into sir, at pos.

REPLACE (str,, posI, pos2, sir2) Replaces the part of str, from pos, to pos2

With sir2.

STRTOCHAR (str, arrayof char) Converts a STRING into an ARRAY OF
CHAR. The size of the array must be
sufficient.

Arrays

An array is an indexed collection of elements of a given type. Indices to an array must be
expressions of INTEGER type or an enumerated type. All array indices start at 0, and if the size of an
array is n then the maximum addressable element is n-1. Multidimensional arrays are allowed.

Examples:

TYPE MYARRAY = ARRAY [20] OF INTEGER;
TYPE NAMEARRAY = ARRAY [201 OF ARRAY OF [10] OF CHAR;

The first declaration is of a one-dimensional array of INTEGERs and the second a two-dimensional
array of CHARs.

If an array A is of type T, then A[i], where i is an integer, is the ith element of A. Array names
may not be used in comparisons or arithmetic operations.

Lists

Th.e LiST type is supplied to provide for integration of imperative IMPORT methods and the DOME
declarative methods. A list is an ordered collection of heterogeneous elements. The elements may be of
any type. An empty list is denoted by NULL.

The following operations are defined on lists:

HEAD (list) Returns the element at the head of the LIST.

TAIL (list) Returns the LIST starting at the second element.

APPEND (list,, list2) Creates a new LIST from list, and list2 and returns it.

NTH (int, list) Returns the nth element of the list.

LENGTH (list) Ret-.rns the length of the list.

13

Objects

An object is either NULL or an instance of its class. The class of an object defines an object's
members. There are three types of members: data members (or fields), imperative methods, and
declarative methods. The field and methods of an object are defined in the DEFINITION module. The
imperative methods are contained in the IMPLEMENTATION or INTERFACE modules, and the
declarative methods (or knowledge-base) are contained in the KNOWLEDGE module.

The values of data members constitute the state of an object. The state of an object can only be
changed by the methods of the object. A method is a body of imperative or declarative code, which may
or may not alter the state of an object.

A declaration of a class in the DEFINITION module has the form:

TYPE identifier = OBJECT (superclass,, superclass2, ... , superclass.)
field and method list

PRIVATE
field and method list

OVERRIDE
field and method list

END OBJECT;

Only the method prototypes are listed in the declaration. The actual methods are defined in the
IMPLEMENTATION module. The IMPLEMENTATION module contains the method bodies for each
class:

OBJECT class,;
method,
method2

method.
END OBJECT

In the case of the INTERFACE module, the language specific renaming of objects, fields, and
methods is given for code generation compatibility purposes. The use of the extended syntax for renaming
is illustrated below. The AS key -orl is used to specify the name of an external object, field, or method.
The STATIC key word is used to indicate a C++ static or class member. AS and STATIC may be
combined.

OBJECT class, AS c++_class name,;
field, AS c++ _fieldname,;
method, AS c++_method name,;
method2 STATIC;

method. AS c++ _method_name_ STATIC;

END OBJECT

Data Members. The fields of an object are declared as follows:

idl, id2, , id.: type;

14

Within each method, instance variables of the object may be accessed as if they were variables in
the local scope. Data members of super classes may also be accessed in this manner. Beyond the scope
of the class, methods of other instances may obtain a value of an instance variable through an ASK
method invocation of the form:

ASK objname id;,

which will return the value of id,.

These methods are automatically defined when the data members of a class are defined. In addition,
a member SELF is automatically defined for each class, and always contains the identity of the instance.
This member may not be assigned to.

Methods. There are six types of methods: CONSTRUCTOR methods, DESTRUCTOR methods,
ASK methods, TELL methods, QUERY methods, and OPERATOR methods. With exception of the
DESTRUCTOR method, methods may be overloaded as long as signatures can be distinguished.

The arguments to these methods may be passed by value, or by reference. Each parameter must be
declared either to be IN (arguments to be passed by value), OUT, or INOUT (arguments to be passed by
reference).

CONSTRUCTOR methods are automatically invoked when an object instance is allocated.
CONSTRUCTOR methods may be overloaded, but may not specify a return value. The CONSTRUCTOR
method for an object is always named ObjInit. A CONSTRUCTOR method prototype looks like:

CONSTRUCTOR METHOD Objlnit (IN param,);

DESTRUCTOR methods are automatically invoked when an object instance is deallocated. Only
one DESTRUCTOR method may be defined per class, and it may have no arguments and may return no
value. It is always named ObjTerminate. A DESTRUCTOR method prototype looks like:

DESTRUCTOR METHOD ObjTerminateo;

ASK methods are synchronous bodies of imperative code and may be used in expressions. They
may return a value, and may contain all three kinds of parameters: IN, OUT, and INOUT. An ASK
method prototype looks like:

ASK METHOD methodname (IN param,: INTEGER, INOUTparam2, param3: REAL) : REAL;

The method defined takes three arguments and returns a REAL.

TELL methods are asynchronous bodies of imperative code: in the current implementation a separate
light-weight process is created for them, and there is no guarantee on order of evaluation. As a result,
they are not allowed to return any value, and may only have IN parameters. For more information on the
interaction of methods, see Simulation Environment, p 32.

TELL METHOD methodname (IN param, : REAL);

QUERY methods are synchronous, and may not advance simulation time. They serve as the
interface to the Theorem prover, and are always BOOLEAN functions. There is no restriction on the types
of parameters. For more information, see The Theorem Prover, p 26.

15

QUERY METHOD methodname (INOUT param,) : BOOLEAN;

OPERATOR methods are the mechanism by which the programmer may overload arithmetic,
relational, and assignment operators. They must be binary functions, taking two arguments of the same
type: the class on which the OPERATOR is defined. It must also return an instance of the same class.
The arguments are passed by value. The operator to be overloaded is given as the methodname.

OPERATOR METHOD + (IN param,, param2 : myclass) : my_class;

Knowledge Base. The knowledge base body is a collection of expressions that is initially in each
object's knowledge base when that object is allocated. This knowledge base is defined for each class and
may be empty. The knowledge base is specified in a KNOWLEDGE MODULE and has the form:

OBJECT classname;
expression,
expression2

expression,
END OBJECT;

The expressions are DOME Goal Expressions, described in Expressions, p 24.

Inheritance. A class may have one or more superclasses from which it inherits members. If there
are conflicting member names, such members cannot be accessed directly by an instance of a subclass and
an error will be reported at compile time.

The fields and methods of a superclass, however, may be overridden with the OVERRIDE directive.
Fields and methods in the override section of the class declaration supersede those of the superclasses.

An object may have private members not visible to methods outside the class. Private members are
declared after the keyword PRIVATE.

If a variable v, is of class C1, and variable v2 is of class C 2 and C, is a superclass of C2 then v2 is
assignable to v1. However, v, is not assignable to v2 since v2 may have fields and methods not present in
V1.

To retrieve a conflicting field (present in both C, and C2), assign v2 to v,, and invoke the appropriate
method. Method Calls (p 25) details this process.

Within a method of a v2, we may access a member of its superclass C, by using the INHERITED
FROM construct:

INHERITED FROM C1, f,

where f, is a field defined in C,. This is only necessary iff, has been overridden in C,.

16

Dearations

IMPORT is a strongly typed language, and variables, constants, classes, and methods must be
declared before being used. Class and method declarations are made in the DEFINITION modules, while
variable declarations can only be found in the IMPLEMENTATION modules. Constants may be declared
in both kinds of modules. Class and method declarations have already been described in Types, p 11.

Occasionally, recursive or interleaved class structures may be required, and a forward declaration
may be necessary. In this case, the keyword FORWARD is used to mark the class.

TYPE my-obj = OBJECT; FORWARD;
TYPE not-my._obj = OBJECT;

field_one : my.obj
END OBJECT;

Classes implemented in other languages are declared as shown above in the DEFINITION module,
but with the additional EXTERN statement added. The default foreign language is C++. The
INTERFACE module facility provides for renaming of classes, fields, and methods as might be necessary
to match up with existing code. Additionally, they may be declared STATIC as IMPORT does not
support the concept of static class members and functions as does C++.

TYPE external_obj = OBJECT; EXTERNAL;
field and method list
END OBJECT;

Constants

Constants may be defined in DEFINITION modules and at any place variable definitions are legal.
These are at the start of new scopes: at the beginning of a method or BLOCK statement. Constant
declarations have the form:

CONST idl = expression1;
id2 = expression2;

All identifiers used in expressions defining constants must also be constants that have already been
defined.

Variables

Variables may be declared at the start of methods and BLOCK statements. IMPORT is a lexically
scoped language.

Variable definitions take the form:

VAR id, : type,;
id2, id3 : type2;

17

Method Bodies

Method bodies are the only p'-- s where imperative or declarative code can be found. Excepting
the QUERY method, method bodies have the form:

method prototype
local variable and constant declarations

BEGIN
statement-list

END MEITOD.

QUERY methods do not have associated bodies in the IMPLEMENTATION module. Instead, they
are entry points into the knowledge base for the class. When a QUERY method is invoked, it is translated
into a new expression to be resolved by the Theorem Prover.

Statements

Statements within a method or BLOCK are executed sequentially. Statements are terminated with
a semicolon.

Assignment

There are 5 forms of the assignment statement, corresponding to each of the four basic arithmetic
operators and a simple assignment:

x:= 3; assigns 3 to location x.
x+= 3; increments x by 3.
x-= 3; decrements x by 3.
x/= 2; divides x by 2.
x*= 3 + 5; multiplies x by 8.

The types of the location (the variable on the left of the assignment statement) must match the type
of value generated by the expression (on the right). These operators may be overloaded with the
OPERATOR method of a class.

Method Invocations

Method invocations are of the forms:

method type objectname TO methodname(argument_list);
method type objectname ABOUT methodname(argument list;

The objectname is a variable that points to an object. The keywords TO (used for ASK and TELL
methods), and ABOUT (used for QUERY methods) are noise words and are optional. ASK, TELL, and
QUERY methods are invoked in this way. OPERATOR methods are invoked simply by using an
arithmetic operator in the normal infix notation.

18

Examples:

ASK missile_1 TO fireat(targeL9);
TELL tankcommander TO attack(hill-291);
QUERY foreman ABOUT fitsin-schedule(project);

newmarble_set:= old_marbleset + winnings;

Here, the assignment operator is also overloaded.

There are predefined methods for each field of an instance. Iff is a field of instance v, then:

ASK vf,

returns the value off.

If v is of type C2 which inherits from C,, then we can invoke methods of C, by using the
INHERITED FROM construct:

INHERITED FROM C, ASK v methodname(arguments);

BLOCK Statements

BLOCK statements are a way of creating a new, local scope within a method. A BLOCK statement
has the following form:

BLOCK
local constant and variable declarations

BEGIN
statement list

END BLOCK;

Variables declared within a BLOCK statement are only applicable within it, and within its subblocks.

IF Statements

An IF statement has the form:

IF expression,
statement-list

ELSiF expression2
statement-list

ELSIF expression3
statementlist

ELSE
statement list

END IF;

19

The ELSIF and ELSE clauses are optional and may be omitted. The expressions must be of type
BOOLEAN. The expressions will be evaluated in order until one of them evaluates to be TRUE. Then
the statements in the corresponding statementlist will be executed.

If no expression evaluates to TRUE, the ELSE clause will take effect. If there is no ELSE clause,
the IF statement will have no effect except for side effects of the boolean expressions.

CASE Statement

CASE statements are a more efficient way of comparing an expression with a set of constants, when
there is more than one execution path. The constant can be a predefined CONST of the same type as the
expression, or more usually members of an enumeration type.

A CASE statement has the form:

CASE expression
WHEN constl:

statement-list
WHEN const2:

statement list

OTHERWISE
statement list

END CASE;

The OTHERWISE clause is optional.

Loop Control Statements

There are four ways to write loops in MPORT. In each of these forms, the loop terminates if an
EXIT statement is reached.

LOOP

LOOP
statement-list

END LOOP;

This loop must contain an EXIT statement in order to terminate.

WHILE

WHILE expression
statement-list

END WHILE;

The expression must evaluate to a BOOLEAN type. If expression evaluates to TRUE, the
statementlist will be executed once, before expression is evaluated again.

20

REPEAT

REPEAT
statement list

UNTIL expression;

The expression is of type BOOLEAN. statementlist will be executed once, then if expression evaluates
to TRUE, the loop will terminate.

FOR

FOR id:= first TO last BY step
statement-list

END FOPR

id is a variable of an ordinal type. first, last, and step are expressions of the same ordinal type as
id. At the first iteration of the loop, id is set to first, and thereafter it is incremented by step. The loop
terminates when the value of id is greater or equal to last.

The keyword TO may be replaced by DOWNTO, in which case, id is decremented by step, and the
loop terminates when the value of id is less than or equal to last. At the termination of the loop, id holds
the last value used in checking the termination condition.

RETURN Statement

RETURN expression;

The RETURN statement is used to restore control to an invoking method. The type of expression
must match the return type of the method in which the RETURN statement is found.

TERMINATE Statement

TERMINATE;

The terminate statement is used to stop the natural sequence of execution within a TELL method.
It is recursive; the termination of the current method also terminates the method that invoked it.

WAIT Statement

WAIT statements are used in ASK and TELL methods to pass simulation time. They may have an
INTERRUPT clause which will be executed if the method is interrupted with the INTERRUPT call
imported from the nm-time simulation library. More information on Interrupt can be found in Simulation
Support, p 32.

WAIT DURATION expression
statement list

ON INTERRUPT
statement-list

END WAIT;

21

There are three forms of the WAIT statement. In the first, expression is of type INTEGER and
gives the amount of time to be passed in the simulation.

WAIT FOR object-name TO methodnam.-(arguments)
statement list

ON INTERRUPT
statement-list

END WAIT;

In the second, the time passed is specified within the method that is invoked, and the statement-list
is executed after the method method-name is invoked.

WAIT FOR TRIGGER trigger obj
statement list

ON INTERRUPT
statement list

END WAIT;

In the third, the method will wait for the specified Trigger object to fire. Trigger objects fire when
their Fire method is invoked. Simulation Support, p 32 provides more information on the Trigger object.

INTERRUPT Statement

There are two built-in procedures supplied for stopping TELL methods that are currently executing
within an instance of an object. They are the INTERRUPT and INTERRUPTALL:

INTERRUPT (instance, methodname)
Interrupts the first TELL method of instance whose name is stored as string.
INTERRUPTALL (instance)
Interrupts all TELL methods of instance.
INTERRUPTALL (instance, methodname)
Interrupts all TELL methods of instance with the given string literal name.

TRANSACTION and ABORT Statements

The concept of a transaction is basic to shared database systems. Transactions are necessary to
permit multi-user concurrent access to shared data in a database. For applications to be able to read and
update the same data consistently, protocols have been developed to overcome problems such as deadlock
that arbitrate access to shared data. A transaction is a sequence of program statements that has exclusive
control over some shared data. Once an application has achieved control of a portion of a database, other
applications must wait for it to finish before they have access to that data. Thus transactions permit a
group of program actions on data to occur without interruption. This is necessary to guarantee integrity
of the database system. Note that transaction boundaries within concurrent database applications must be
planned wisely. The goal is to permit other applications access to data also. The amount of data locked
within a transaction is a prime consideration in multi-user database applications; such data must be
structured appropriately.

A major design requirement for IMPORT is to provide multi-user concurrent access to shared
databases. Therefore it is necessary to provide some form of transaction man4ement flexibility within
the language. In IMPORT, this is accomplished with the TRANSACTION statement. The TRANSAC-
TION and ABORT statements are used when interacting with persistent storage. Any nontransient NEW

22

statement, that is, one that allocates into secondary storage, must be enclosed by a TRANSACTION
statement. This is true for any statement that modifies the state of a Database. The actions on a Database
within a transaction are atomic, and either all actions on a Database within a transaction are completed,
or none are completed.

A transaction may be aborted by the object-oriented database system, or it may be aborted by the
programmer with the ABORT statement. TRANSACTION statements may have an ABORT clause, which
is executed when the transaction is aborted. A TRANSACTION statement has the form:

TRANSACTION
statement list

ON ABORT
statement list

END TRANSACTION;

Abort statements have two forms:

ABORT;
ABORT ALL;

The first form aborts the deepest enclosing TRANSACTION, and ABORT ALL aborts all enclosing
transactions.

IMPORT Statements

IMPORT statements are used to share classes between modules, and have the form:

FROM module, IMPORT idl, id2;
FROM module2 IMPORT ALL id3;
FROM module3 IMPORT id4 AS id5;
FROM module4 IMPORT id6(id, AS ids);

The first statement imports id, and id2. T'Ihe second statement imports id3, which is an enumerated
type, and all its members. The third statement imports id 4 in module3 and renames it to id5 in this module.
The fourth statement imports id6, an enumerated type, and only one member of the enumeration id,, and
renames it to id8.

Dynamic Memory Management

NEW

The NEW built-in procedure allocates memory for the creation of object instances. Suppose id, is
of type class,. Then NEW (id,) creates an instance of class, in transient memory. Additionally,
parameters to the CONSTRUCTOR method of an object may be specified:

NEW (id,(arg, arg.)

To allocate an object instance into persistent store,

NEW (id,, database in use)

23

creates a persistent instance of class, in the object-oriented database database_in_use. database_in_use
is a variable of type Database. Objects can also be allocated in Segments and Configurations. The class
libraries used to support persistence are covered briefly in Database Class Library, p 32 and fully
described in Appendix B.

DISPOSE

The DISPOSE built-in procedure returns transient objects to the heap and removes a persistent object
from the database:

DISPOSE(my obj);

Expressions

An expression is a computation that produces a value. An expression is either an operand or an
operator applied to operands. An expression is evaluated by recursively evaluating its operands, then
applying the operator to it. The order of argument evaluation is undefined; in particular, there are no
"short-circuit" BOOLEAN expressions.

Operators and Precedence

Method invocations, built-in function calls and array indexing always have the highest priority, after
which the priority and associativity are listed in decreasing priority (Table 1). All the operators are infix
operators.

Integer Literals

INTEGER literals may be represented in decimal or hexadecimal (when appended by the letter H).

Example:

A091H

Table I

Operator Assoelativity by Decreasing Priority

Operator Assoclativity
unary - right
*/DIV MOD left

+- left
= o < > >= <-- non-associative

NOT right

AND left
OR left

24

Character Literals

Character literals are represented by a printable character in single quotes or a decimal number from
0 to 255 followed by the letter C.

Example:

,4C

String Literals

String literals consist of a sequence of printable characters on one live within double quotes.

Example:

"This is a string."

Floating Point Literals

Floating point REAL literals are represented in decimal form, or in scientific notation.

Examples:

1.0
0.31
1.3E+20

All literals must have an integer portion and a fraction portion. The numbers: 1. and .2, are not
legal floating point literals.

Lists

Lists are denoted by expressions separated by commas within square brackets.

Example:

["string", 34, y]

The example shows a list of three elements, consisting of a string, an integer, and the value of
variable y.

Designators

A designator is an expression that denotes the location where a value is held. Variables used in
expressions are designators. a[i], where a is an array, and i is an ordinal, denotes the ith element in array
a, and is also a designator. These are the only two kinds of designators.

Method Calls

Invocations of methods that return a value are also expressions. The type of the expression is the
type of the return value of the method.

25

Arithmetic Operations

The basic arithmetic operations are built into the language and are defined for REALs and
INTEGERs. In addition, DIV, which returns the quotient of an INTEGER division, and MOD, which
returns the remainder of an INTEGER division, are also defined. All arithmetic operators are infix
operators. The type of the expression returned by the arithmetic operation is the type of its operands.

Relations

The relations less than (<), greater than (>), equal to (=), less than or equal to (<=), greater than or
equal to (>=) and not equal to (<>) are built into the language for ordinals and floating point numbers.
The type of a relation is always BOOLEAN.

Boolean Operations

The operations logical-and (AND), logical-or (OR), and logical-not (NOT) are defined for
BOOLEANs. The expression formed with these operators are also of type BOOLEAN.

NULL

The keyword NULL designates a null value. This can be an object, or a STRING.

UNINSTANTIATED

The keyword UNINSTANTIATED, when assigned to a variable, denotes a variable that has no
value. This is used in conjunction with QUERY methods to determine the result of computation. For
more information, see The Theorem Prover (p 26).

The value of UNINSTANTIATED is implementation dependent, but is usually the largest negative
INTEGER for integer and enumerated types, 0 for CHARs, NaN (not a number) for floating points, and
a pointer to a unique location, usually NULL, for other types of variables.

Relationship to DOME

IMPORT was designed to support a declarative programming facility. This capability is supplied
through integration with DOME, which was developed in conjunction with IMPORT (Whitehurst and
Pietrzak 1993).

The DOME Theorem Prover

The DOME theorem prover is based on Prolog, with a similar Horn Clause unification model. Each
expression represents a Horn Clause, and is asserted into the knowledge base of the object that contains
it. Clauses can be added to a knowledge base through the KNOWLEDGE section of an object, or through
QUERY method definitions.

Within a proof, all clauses are considered equivalent. The difference between the two ways of
adding clauses to an object involve how a proof is invoked: All clauses that appear in the KNOWLEDGE
section are for the internal use of the theorem prover. QUERY methods, however, can be called from
other IMPORT methods, in a manner similar to ASK and TELL method invocations.

26

The order of clauses with a head of the same name is significant; during a proof, the ith clause
ence- '-red will be chosen before the ith + 1.

Parameters within a QUERY invocation are split logically into two types: constant (or instantiated),
and uninstantiated. The constant parameters can be any constant or variable declared within IMPORT,
except those variables specifically declared as uninstantiated. Constant parameters are used directly by
the theorem prover, and are not modified. Uninstantiated variables are modified depending on the success
of the proof.

When a QUERY method is invoked, the theorem prover will attempt to unify the given parameters
with the clauses available in that object's knowledge base. Due to inheritance, it may also search other
knowledge bases for a solution. When it has finished attempting to prove the query, the theorem prover
will return true or false depending on its success. If it returns true, it will also assign the substituted
values used to solve the proof into the corresponding uninstantiated variables passed on (Figure 2).

Note: Only the first solution found by the theorem prover will be returned; other potential solutions

are ignored.

DOME Goal Expressions

The DOME "goal" expression is encoded into an assertion or a query to be executed by the DOME
proof procedure. These expressions can only be found in the KNOWLEDGE module. The syntax of a
DOME goal expression is always of the form:

A~t, t2- 0.. .

where f is the name of the goal, and the ts are the arguments of the goal. Each ts is a DOME term.

An example of such an expression:

age (john, 23)

where "john" is a symbol, and "23" is an integer constant. Both are considered as terms in DOME
parlance.

DOME Terms. There are three kinds of DOME terms: constants, variables, and lists. A constant
DOME term can be an integer, string, symbol, etc., defined just as normal constants are within IMPORT.
However, variables within IMP "RT are treated as either constant DOME terms or variable DOME terms,
depending on their value: An irhstwiuated variable is considered to be constant by the theorem prover, but,
an uninstantiated variable is considered to be a variable DOME term when given in a query, and thus the
theorem prover is allowed to assign some value to it. A list is a variable of type LIST.

Success Constant Uninstantiated

FALSE No effect No effect

TRUE No effect Instantiated, if necessary

Figure 2. Effect of Return of QUERY Invocation On Given Parameters.

27

Built-in Procedures and Functions

IMPORT inherits the built-in procedures and functions of ModSim with a few additions, all of which
are reproduced here for easy reference. The built-in procedures are shown below using a syntax close to
that of methods in terms of their parameters. In the following descriptions, square brackets, [], represent
optional arguments.

Built-in Procedures

ABORT [ALL]

Aborts the current transaction. ABORT ALL aborts the current and all enclosing transaction.

DEC(INOUT arg : AnyOrdinal [; n : INTEGER])

Decrements any ordinal (enumeration, integer, or character) typed variable. Decrements by one
unless optional parameter specifies differently.

DISPOSE(IN arg : AnyObject)

Free memory associated with a variable of type OBJECT: transient or persistent.

HALT

Terminates execution of a program. All transactions are aborted.

INC(INOUT arg : AnyOrdinal [; n : INTEGER])

Increments any ordinal (enumeration, integer, or character) typed variable. Increments by one unless
optional parameter specifies differently.

INPUT(OUT arg, : SomeType [;arg2 : SomeType... .)

Reads from standard input and places values into each of the parameters. Input values may be
separated by spaces, tabs, or newlines. SomeType must be CHAR, INTEGER, REAL, or STRING.

INSERT(INOUT str, : STRING: IN pos : INTEGER; IN sir, : STRING)

Inserts str, at pos in str2. Numbering of positions in STRINGs begins at position zero (0).

NEW(OUT obj : AnyObject [; IN Database I Segment I Configuration])

Allocates storage to a variable, obj, in either transient or persistent memory. Persistent allocation
requires specification of a location in terms of an object of type Database, Segment, or Configura-
tion.

OUTPUT(IN arg, : SomeType [; arg2 : SomeType ...])

Places the contents of the variables given as parameters on the standard output device. SomeType
must be CHAR, INTEGER, REAL, or STRING.

28

REPLACE(INOUT str, : STRING; IN pos1 , pos2 : INTEGER; IN str2 : STRING)

Replaces that part of str1 beginning at pos, and ending at pos2 with str2.

STRTOCHAR(IN str: STRING; OUT ArrayOfChar : ARRAY OF CHAR)

Converts str to an : ARRAY OF CHAR) stored in the variable ArrayOfChar.

INTERRUPT(IN obj : AnyObject; IN method: STRING)

Interrupts most imminent method of AnyObject returning control to the point of invocation,
activating the ON INTERRUPT clause, if any.

INTERRUPTALL(IN obj: AnyObject [;IN method: STRING)

Interrupts the ALL methods named method of AnyObject. If no method is specified, interrupts all
pending TELL methods.

Built-in Functions

ABS(IN arg: INTEGER I REAL) : INTEGER I REAL

Returns the absolute value of the argument.

APPEND(IN list,, list2, LIST) : LIST

Creates a new LIST from list1 and list2 and returns it.

CAP(IN ch : CHAR) : CHAR

Returns the capital (uppercase) character corresponding to the argument.

CHARTOSTR(IN ArrayOfChar : ARRAY OF CHAR) : STRING

Returns a value of type STRING based on conversion of the input ARRAY OF CHAR type
argument.

CHR(IN n : INTEGER) : CHAR

Returns the CHAR corresponding to the INTEGER argument. The range is 0-255.

FLOAT(IN n : INTEGER) : REAL

Returns the REAL value of the INTEGER argument.

HEADQN list: LIST) : LIST

Returns the element at the head of the LIST list.

29

INTrOSTR(IN n : INTEGER) : STRING

Returns a STRING value representing the INTEGER argument.

LENGTH(IN list: LIST): INTEGER

Returns the length of the list.

LOWER(IN str: STRING) : STRING

Returns a value of type STRING corresponding to the argument in all lowercase.

MAX(ScalarType) : ScalarType

Returns the maximum value of the given type that is representable by the computer.

MAXOF(IN arg, : ScalarType [;IN arg, : ScalarType 1) : ScalarType

Returns the maximum value of all the arguments. The arguments must be of the same type.

MIN(ScalarType) : ScalarType

Returns the mimimum value of the given type that is representable by the computer.

MINOF(IN arg, : ScalarType [;IN arg, : ScalarType 1) : ScalarType

Returns the minimum value of all the arguments. The arguments must be of the same type.

NTH(IN ina : INTEGER; IN list) : LIST

Returns the nth element of the list.

ODD(IN n : INTEGER) : BOOLEAN

Returns TRUE if the argment is odd, otherwise FALSE.

ORD(IN arg : OrdinalType) : INTEGER

Returns the ordinal value of the argument.

PERSISTENT(IN obj : ObjectType) : BOOLEAN

Returns TRUE ,f the argument has been allocated to persistent store, otherwise FALSE.

POS1TION(IN str,, str2 : STRING): INTEGER

Returns the position of sir, in str2. Position is numbered begining from zero (0).

REALTOSTR(IN arg : REAL): STRING

Returns a STRING value representing the REAL argument.

30

ROUND(IN arg : REAL): REAL

Returns the argument rounded to the nearest integer.

SCHAR(IN st- : STRING; IN pos : INTEGER) : CHAR

Returns the character at position pos counting from zero (0) as the first position.

SIMlTMEO : INTEGER

Returns the current simulation time.

STRCAT(IN str1, str2 [, sir,]) : STRING

Returns the STRING consisting of the concatenation of the arguments.

STRLEN(IN str: STRING): INTEGER

Returns the length of the STRING sir as an INTEGER.

STRPUT(IN arg, : SomeType [; arg2 : SomeType... 1): STRING

Returns the STRING consisting of the concatenation of the arguments. The arguments are converted
to their STRING representation. SomeType... may be CHAR, INTEGER, REAL, ARRAY OF
CHAR, or STRING.

STRTOINT(IN sir: STRING) : INTEGER

Returns the INTEGER representation of the STRING argument.

STRTOREAL(IN str : STRING) : REAL

Returns the REAL representation of the STRING argument.

SUBSTR(IN pos,, pos2 : INTEGER; IN str: STRING): STRING

Returns the part of the str beginning at pos1 and ending at pos2. Positions are numbered beginning
at zero (0).

TAIL(IN list: LIST) : LIST

Returns the LIST starting at the second element.

TRUNC(IN arg : REAL) : INTEGER

Returns the INTEGER valued part of the REAL parameter.

UPPER(IN str: STRING): STRING

Returns a value of type STRING corresponding to the argument in all uppercase.

31

"AL(IN OrdinalTypeName; IN Ordt'um : INTEGER): OrdinalType

Returns the value of the ordinal type name, e.g., CHAR, at the given ordinal position.

Standard Library Modules

The IMPORT language depends on Standard Libraries to achieve certain capabilities. At present,
these consist of modules for simulation support and persistence. These are needed as a minimum, and
additional modules are planned to provide a basis for general applications development.

Simulation Support

Simulation time is kept as an INTEGER with no associated units.

SIMTIME 0

Returns an INTEGER that is the current simulated time.

Simulation granularity is user-defined. Each TELL method creates a new task and any TELL
method may create more than one active task at a time.

The main feature of the simulation environment beyond the WAIT and TELL constructs, is the
Trigger class, used for synchronization. The runtime module is included automatically with each
module and contains the definition of the Trigger.

DEFINITION MODULE RT;

Trigger = OBJECT;
ASK METHOD Fire 0;
ASK METHOD InterruptTrigger 0;
END OBJECT;

END MODULE.

Invoking the Fire 0 method of a Trigger releases all tasks that are waiting on the Trigger. Invoking
InterruptTrigger 0 causes all tasks waiting on the Trigger to execute the ON INTERRUPT portion
of the WAIT FOR TRIGGER statement instead.

Database Class Library

IMPORT provides a database class library supporting persistent object storage. Objects are allocated
into persistent store using the NEW procedure (described in Dynamic Memory Management, p 23). All
interaction with a database must be enclosed within a TRANSACTION statement, p 22. Table 2 lists the
database classes. The full class definitions are given in Appendix B.

32

Table 2

Database Classes

Clam Description

Database Contains information on where other objects are stored

Directory Allows hierarchical storage of roots in the Database

List An ordered collection of objects

ListCursor Cursor for a List

Tree Generalized tree of objects

TreeCursor Cursor for a Tree

Configuration Configuration for versioning

Workspace Workspace, where configurations of objects are checked into, and modified

33

3 IMPLEMENTATION

The object-oriented approach to software design and development is most generally characterized
as modeling. The resulting software systems can be thought of as simulations. IMPORT was motivated
by the requirements for complex system modeling and simulation. To respond to these requirements, it
was natural to take this same approach to implementation. In this regard, the implementation of IMPORT
more closely resembles a state-of-the-art CAD system than a programming language. Dart (1990) gives
an insightful analysis of the benefits achievable in software development environments by adopting CAD
system approaches.

Introduction

The implementation strategy of IMPORT supports the goals of software engineering in general and
anticipates specific requirements fcr" its intended use within a software development environment. From
the software engineering perspective, IMPORT is implemented as an object-oriented framework modeling
an Intermediate Representation of the language. The modeling approach supports understandability and
maintainability as it reflects a close correlation between conventional complier constructs and software
classes. The tools chosen for implementation are reliable, efficient, and portable. The framework
approach is the best current thinking in software engineering for reusability through design iteration
(Johnson and Foote 1988). The veriftcation of a language is more constrained than many general
applications, and test suites have been developed that exercise all specifications of the implementation.
Validation of the requirements on which the design rests requires the use of the language in the
development of applications of the type for which it was built. Efforts in this direction are underway.

Requirements differentiating IMPORT from other languages are those related to software
development environments. Generally, IMPORT is intended to be used within a distributed, collaborative
software engineering development environment. The trend toward the use of object-oriented database
systems as the underlying mechanism to support such systems seems clear. This approach permits a
number of significant benefits and offers a more integrated solution to some longstanding problems.
Perhaps the most interesting, from a research point of view, is in configuration management (Kalathil and
Herring 1993). IMPORT may be the first fully functional programming language with an implementation
based on an object-oriented database with the aim to provide consistent and integrated support within a
software engineering environment. Longer term plans include knowledge-based software engineering that
places further requirements on representations for reasoning about software artifacts (Lubars and H-avandi
1987). Chap~er 4 develops an overview of the motivation for these and other related requirements. Brown
(1991) gives a good summary statement of requirements for software artifact object repositories.

This chapter describes the implementation of the IMPORT compiler, beginning with a brief overview
of compilation as it relates to the structure of the IMPORT compiler (Aho, Sethi, and Ullman 1986).

Compilation is the process of transforming programs from the source language (high-level) format
into some target (lower-level) format. This process can be divided into two stages: analysis and synthesis.
The analysis phase decomposes source input into elemental components represented in some convenient
intermediate form. The synthesis phase assembles the target format program based on the intermediate
represenation. Analysis consists of three parts: linear, hierarchical, and semantic analysis. Linear analysis,
often called lexical analysis, views the source program as a sequence of characters. During this phase,
characters are read in and grouped into symbols or tokens of the language, i.e., keywords and identifiers.
The tokens recognized in lexical analysis are passed on to the next step. In hierarchical analysis, often
called syntax analysis or parsing, the tokens are further grouped into collections having some higher-level

34

meaning in the source language. These collections usually take the form of parse trees or syntax trees.
"That is, they are naturally hierarchical in structure. These hierarchical structures are processed during
semantic analysis to ensure program correctness (at the next higher level of abstraction) and insert
information needed for the subsequent synthesis phase. Synthesis uses the results of analysis to produce
the target formated output. There are several approaches depending on the host and target hardware and
software environment. It is common in the synthesis phase to produce another intermediate (machine
independent) representation and to optimize it. This optimized form is then translated to the binary format
of the target machine. System utilities take care of linking appropriate libraries and other needed runtime
support to produce the final executatle. Figure 3 gives an overview of the components of the IMPORT
compiler.

The Lexer, Parser, and Semantic Controller constitute the components of the analysis phase. The
bottom three, Code Generator, Compiler/Linker, and Runtime comprise the components of the synthesis
phase. In traditional compilers, these components create intermediate representations in transient memory.
IMPORT is distinct in that an Object Repository is used to store an extended intermediate representation.
The repository is shown at the center of the diagram as all components interact with it in performing their
respective actions. Necessary to all phases of the compilation process is the management of the Symbol
Table and other bookkeeping functions.

Given this overview of the components of the compiler and their interaction, the presentation is
organized as follows. Beginning with the object model of the intermediate representation, which forms
the structure of the object repository and provides the basis for a discussion of the analysis portion. The
synthesis part of the compiler follows, which includes the code generator, the DOME interpreter interface,
and the simulation runtime support. Finally, the role played by the Generic Object-Oriented Database
(GOOD) interface in implementation of the compiler and support for persistent programming in the
IMPORT language is described.

-L-'-r Semantic

• •Controller

Compilerf/

Figure 3. IMPORT Components and Their Relationships.

35

Modeling IMPORT: The Intermediate Representation

This section presents the intermediate representation designed to support compilation as well as the
application domain goals of the IMPORT compiler. The representation is designed to be generic, and yet
have enough correspondence with other modular object-oriented programming languages to facilitate
translation to and from these languages. This especially helps in code generation. Appendix C includes
the C++ header files for the classes described in this section.

The simplest internal representation of a program is a parse tree with an associated symbol table.
However, additional information that is useful during compilation and in the development of software
engineering tools is also required. To meet these goals, a set of Software Engineering Environment (SEE)
classes that form the basis for interaction between the tool set were designed. (The overall structure of
the environment and tools are discussed in Chapter 4.) The SEE classes are used to represent the
imperative portion of an IMPORT program. The declarative portion of the program is translated into a
knowledge-base representation. This takes the form of a collection of expressions identical to the
implementation of the first class data-type LIST. Details of how this is used in the interface between
IMPORT applications and the DOME theorem prover can be found in The DOME Runtlime Interpreter
Interface, p 46.

The general structure of a module (or application) is decomposed into the hierarchical form shown
in Figure 4. This form follows the structure of the IMPORT language closely. A module contains
declarations (constants and types) and classes. Classes are composed of declarations (fields) and methods.
Methods contain local declarations (constants, types, and variables) and the statements that make up the
body. During compilation, each node shown in the tree structure becomes an instance of one of the SEE
classes.

Module

Delaation Class-l Clam-n

Claw Names and Types I \

Declaration Method-I Method-n

Claws Members

Declaration Abstract yntax Tree

Loacal Variables and Constants Operator and Argument nodes

Figure 4. Modeling Software With Objects.

36

At this point, a more formal notation is introduced to describe the SEE classes. This notation comes
from the object-oriented analysis and design methodology known as Object Modeling Technique (OMT)
(Rumbaugh 1987). Explanations of the symbology used in OMT will be given as it is encountered. A
limited subset of OMT was taken from the OMT Object Model. Figure 5 shows the OMT equivalent of
Figure 4.

The "part-of" relationship among classes is called aggregation. The diagram shows the aggregation
relationships among the SEE classes id_Module, idClass, id_Method, Declaration, and astnode. The
diamond symbol (under idModule) stands for the aggregation relationship that exists between idModule
and idClass as explained above. The soild circle shows this relationship is "one-to-many": a module
contains zero or more classes. A detailed presentation of structure of the SEE classes and their supporting
classes is given below.

Modules

Each application is composed of modules. Figure 6 shows the attributes for the class idModule.
The id_Module attributes include the module_name, which is a string, and a moaulejtype, which is an
integer. Two attributes assisting in code generation are lasttouch and hasexternal-obj. The first of these
stores an integer value corresponding to the date and titae of compilation, and the last indicates whether
the module has externally defined classes. Three of the attributes are pointers to other classes. The decl
is a pointer to an instance of class Declaration that is examined in detail later. The two remaining
attributes are instances of idoodblist (See The GOOD Common Interface, p 53). The classes attribute
is a list or collection of the classes declared (or defined) in the module, and imported&modules is a list
of the modules imported for type visibility. An OMT class diagram shows methods of the class as well
as attributes. In the case of idModule, there is only one constructor and a destructor. These methods
are omitted from this and future diagrams because they are assumed for all classes.

1idModule

Dwclarafion iIa

idMethod

•utjode

Figure 5. OMT Diagram of SEE Classes.

37

idModule

module_name : character
modulejtype : integer
classes : id_oodb_list
imported_modules : id_oodb_list
decl : Declaration
lastouch : integer
has-extemal-obj : boolean

Figure 6. Class Diagram of the Id Module Class.

id..Class

se : symtabo..entry
superclasses symtab entryjist
storage-type type.expressionlist
methods : id_oodbist
tell_methods : idoodb_list
decl : Declaration
is forward: integer
is-external : integer
knowledge: id-oodb..list

Figure 7. Class Diagram of idClass.

Classes

The idClass models an IMPORT "Object." It contains types and names of fields, access rights,
and inheritance information. In each is also a collection of methods (Figure 7).

Each object in a module must be stored in the symbol table. idClass contains an attribute for this
purpose: se, which is a pointer to an instance of symtab.entry class. The attribute symtab-entryjlist
contains pointers to instances of symtabentry for each class from which the instance inherits. This is
necessary for code generation. Also, id_Class must store the methods of the class. This is accomplished
by an id_oodb list. A distinction is made for TELL methods as they require special handling during code
generation. A pointer to an instance of Declaration, decl, holds the declaration of the fields of the object.
is_forward and isexternal are needed both for parsing and code generation. The declarative statements
from the KNOWLEDGE module are stored in another id_oodb_list in the attribute gkmow.

Methods

IMPORT methods are modeled by the idLMethod class. Instances of this class describe the various
methods supported by IMPORT, characteristics such as parameter names and types, the type of any value
returned, local variables, and abstract syntax trees that describe the statements in each method. The
idMethod class is shown below in Figure 8.

Each instance of id_Method contains a symbol table entry, se, for the method and a method type
indicator. The parameters to the method, parms, are stored in an instance of symtab-entry.ist and their
types, parm-type, are stored in an instance of typeexpression.list. The storage type of the returned value,
if any, is found in storagetype of which is also represented as a type-expressionlist. A pointer to an
instance of Declaration, decl, stores the locally declared variables of the method and asf is a pointer to

38

id/Clasa

se : symtb.entry
method-type: intege
pam-type : typ.e.xpresaionjist
storageype : typexpessionjist
pms : symtab..entryJist
of~claa : symtab.entry
decl : Declaration
adf: astnode
ispublic : boolean

Figure 8. Class Diagram of idMethod.

Operator and
Argument node

I '4

Operator Argument 1 Argumentý_n

Fligure 9. Node in the Abstract Syntax Tree.

the ast node, which stores the body of the method. The is-private boolean attribute indicates if the
method is declared PRIVATE in the definition module.

Abstract Syntax Nodes and Tree

The abstract syntax tree (ast) is a commonly used structure for storing information obtained about
a program during parsing and for subsequent manipulations. The ast structure stores the minimal amount
of information necessary (unlike parse trees). Each Abstract syntax tree is composed of operator and
argument (operand) nodes (Figure 9). In an ast, the operator is found at an interior node and the operands
are the children, or leaves, of the operator. Attributes determined during parsing are stored in the nodes.
The ast structures are built up during parsing to represent the statements in the program. In the case of
IMPORT, they store statements found in method bodies. These sequences of statements take the form of
ordered lists of ast nodes.

Each operator and argument node contains an operator and an ordered collection of operands, where
each operand is an operator and argument node. Figure 10 shows the class diagram for the ast_node. The
op attribute stores the particular operator of the ast node. These are the arithmetic, relational, boolean,
keywords, built-ins, etc.. of the language definition. The method and obj-instance attributes are only used
(valid) for certain method invocations. The which~type attribute is a pointer to an instance of
type-expression~list and stores the type of the operator. The final attribute is a union structure. This
structure holds the semantic value or meaning of the operand. This includes the basic types, symbol table
entry, or a list of operands for the node. There are constructors for the class that create each of the
possible different ast node types.

39

idCls"

op : oprMa"r
whichLyp: ty:...exprmon..tist
method : ymotab-eaty
objinstoce : aguede
semic..value : union sbuctme

Figure 10. Class Diagram of ast node.

Block node

Declaration Abstract Syntax Tree

Figure 11. A Block Node With Declaration Object.

There are other useful attributes that can be included in the at_node class to support the
development of software tools. They may keep pointers to sections in the source, or the source itself at
this level. This is to help with applications like structure editors and debuggers. Relevant sections of code
can be accessed in this way. Other bookkeeping information can be stored at this level for such tools as
rnm-time profilers.

The ast approach is used to implement the BLOCK statement in IMPORT (Figure 11). IMPORT
is a lexically scoped language, and within a method or block, the BLOCK construct permits the definition
of a new scope. Hence, the block node must keep track of the new environment in which the contained
statements must be executed. This is accomplished by placing a Declaration object as the first operand
in the operand list of the ast_node.

Supportng Clases

A number of classes are needed to support the SEE classes in compilation of IMPORT modules,
code generation, and development of software tools. These classes have, necessarily, been referred to
above in conjunction with the presentation of the SEE classes.

Tvve Exmrsion and Type Expression List The IMPORT compiler must perform static type
checking of the source code modules. IMPORT is a strongly typed language and static type checking
helps ensure program correctness. Static checking ensures that types produced by language constructs
match. A type expression is the type, as defined by the language's type system, produced by some
language constMucL In IMPORT, there is a set of basic supplied types, e.g., INTEGER, and user-defined
types, e.g., OBJECT. Many other constructs have type expression associated with them, for example,
methods that return a value and built-in functions. Figure 12 shows the type-expression class.

40

type expresion

idjype: atomnic ype
array-size : inteper
id-class : symtabl_ety

F -: M(typexpreSion)

Figure 12. The typeexpression Class.

IDeclarationI

enclosing local declamios

local symbol table

Figure 13. The Declaration and Scope Clamss.

This simple class contains attributes for storing the type of a language construct. The attribute
id_type stores the basic language defined types such as BOOLEAN, INTEGER, etc. If the type is
OBJECT, then the idclass attribute refers to its symtabentry. The arraysize attribute stores the size of
a type declared as an ARRAY is valid only for this type. In addition to constructor and destructor
methods, typeexpression has an operator method for testing equality.

The type-expression list inherits from id_oodb..ist and stores a collection of type-expression object
instances. It has methods for operating on typeexpression_list such as comparing, copying, and
appending. It is used, for example, to pass method argument lists.

Declarations and Scores. Declarations, such as of variables in a programming language, associate
information with the name of the declared object. This information is used within the context of the scope
rules of the language to determine if and when a name is valid and how it can be manipulated. The
section of code (program text) in which a declaration is valid is called a scope. IMPORT is a block
structure, lexically scoped language. During compilation, a symbol table entry is created in the symbol
table on encountering a new declaration within a scope.

41

The Declaration class contains pointers to the smallest enclosing scope: the local scope. This scope,
with all its ancestors, which represent other enclosing scopes, constitute the current environment for a
lexically scoped language. The Declaration class contains an attribute that is a reference to a
symtab.entry-list. The object referred to here is the set of declarations, stored in the symbol table, that
are within the local scope. (This structure is necessary to nm an interpreter using the intermediate
representation of the program.)

The Scope class is used to manage declarations within a scope. It contains a reference to the
previous enclosing scope and the depth of the current scope within the context of the environment. It has
a list of declarations within the scope, and a local symbol table is provided for their access. The local
symbol table is implemented as an open (no limit) hash table of entries, with one symbol table entry per
identifier. These entries contain all the semantic and type information for that identifier. Figure 13 shows
the relation of the Declaration class to the Scope and symtab..entry~jist classes.

The Symbol Table and Symbol Table Entries. A symbol table is used to manage declarations and
their scopes as they are encountered in modules and for code generation. The symbol table is organized
as a directed acyclic graph of scopes, whose root (there being only one top level node) is the global
environment. Immediately below this level is a collection of scopes for each individual programming
module. Each entry in the symbol table, actually in the appropriate scope, corresponds to the name of a
declaration. Access to declarations is efficiently implemented by hashing on the spelling (characters
making up the name) of the declaration. The Symtab class is shown in Figure 14. Its relation to the
Scope and symtab_.entry class is shown in Figure 15.

Finally, the symtab.entry class contains the information associated with a named declaration. It
stores the name, the generated name (for code generation), the symbol type, and other information (Figure
16). It also constrains references to instances of idClass, id_Method, and type_.expressionjlist. These are
needed for access to complex symbol table entries such as objects, methods, type names, and variables.

In addition, the symbol table also keeps track of a "use list" for each variable (stored in a
symtabhentry instance). The list keeps track of the blocks or sections of the parse tree where a variable
is used. This is a service provided to support other tools, like structure editors and interpreters that can
use this information to help the programmer maintain consistency when a variable declaration is changed.

Lexer, Parser, and Semantic Controller

The presentation of the SEE classes in the previous section explained the Object Model supporting
both the analysis and synthesis phases of the IMPORT compiler. This section describes the tools used
to construct the compiler, and other classes developed for the analysis phase, and relates them to the SEE
classes. As described earlier, the analysis portion of the compiler consists of the lexer, parser, and
semantic controller. Figure 17 shows a schematic of the components of the analysis phase.

The lexer and parser for the IMPORT compiler was built using Compiler Resources' Yacc++
(Revision 1.4). Yacc++ is an advanced, object-oriented, language construction tool written in C++. The
objects in dashed boxes in Figure 17 are components from the Yacc++ Language Objects Library (LOL).
The "lexer" is more than the usual deterministic finite automata (DFA) lexer, and is specified in terms of
productions much as the parser is specified. This allows nested comments that would otherwise not be
possible in a standard DFA. The parser produced by Yacc++ is a table-driven LR(l) parser superior to
the commonly available Unix yacc LALR implementation. The accompanying reference manual fully
describes the LOL classes (Compiler Resources 1992).

42

Symtab

ctrMLSCOWpe:
Cwe u : aope

CulmTLobject: symwb..-eny

enternew-scope
enlcrobject..accpe
Leave-sacome

inaertobject

Waft-inpofted
ihnpow-om.symbdl
isjn..object
is-in..aperclaas
is_-*jode

is-.namejn..scope

figure 14. The Symoaib Chia.

Symitab

Figure 15. Relation of Syintab, Scope, and sy~tbentry Classes.

This section describes the idsemanticcontroller class and its relation to the SEE classes and the
object repository. The semantic action code and the SEE classes are written in C++. The header files for
these classes are listed in Appendix C. The semantics actions detennined during parsing result in method
invocations on an instance of id-semanticcontroller. This object uses the SEE and associated support
classes to consuct the intermedit r of the module being compiled. The iermediate
representation is stored in an object repository created by use of the GOOD interface (described in
Geaerk Object-Oriented Database Interface, p 52).

Figure 18 shows tke id_semanticcontroller class. It contains attributes, mostly pointers to object
instances, determined by the state of the parser. It maintains references to the current module, object, and
method for which it is constructian the itermediate represenation. Most of the methods of this class ar
of the form id_semanic_controler:: buildX, where X is a construct of the language. There is a method
of the class for all constructs. These am called by the parser when it determines the construct.

43

ymtab-entry

symboLj.nm: charact
gererated-nam : chacter
symboLtype : enumeration
useJis: asUist
saoragepme: type._xpressionflist
object : idClass
method: imeto
pemnojype : pamnuiops
uselist : adnode
isLprivate : boolean
isstatic : boolean

Figure 16. The symtabL.entry Class.

Not brought out in the discussion of the SEE classes is the appearance of the id_oodblist class as
attributes. This class is heavily used in the implementation as it provides support for storage of lists of
persistent objects. This is one of the classes of the GOOD interface. Several of the SEE classes inherit
from id_oodb_list. These are asLlist, type"expressionjlist, and symltabentryJist. It is through the use
of these classes and persistent object allocation functions of the GOOD that id_semantic_controller builds
the persistent intermediate representation.

A separate lexer and parser was also created for DOME to produce the intermediate form of the
declarative code found in KNOWLEDGE modules. This parser was constructed with the same tools as
the IMPORT parser described above. Yacc++ provides for the collaboration of these two distinct parsers
within a single application.

Code Generator, Compiling, and Linking

It was decided that the code generator should produce C++ code for a number of reasons. Since
it has replaced C as the de facto systems programming language, there is a close mapping between the
constructs found in IMPORT and C++. This greatly facilitates code generation. Features such as
inheritance, and operator and method overloading, for example, are much easier to achieve. This
significantly reduced the amount of effort needed to quickly get the language running, especially when
compared to generating machine instructions directly. This approach should also provide for
cross-platform portability.

The code generator produces C++ code from the intermediate representation stored in the object
repository. It takes as input commands the specification of a path to the repository and the name of a
module or a key. The class idcode.generator performs the reverse operation of id_semanticcontroller
of the last section. It has basically the same attributes and an idcode.generator :: generate.X method
where X corresponds to a languge construct. This class performs a pre-order traversal of the intermediate
representation to produce the corresponding C++ code for each ast node. It is, however, specific to
IMPORT since it requires knowledge of the persistent class libraries, and the IMPORT runtime libraries
to generate the code required by each of them. It also produces the C++ statements to create the structures
required by the theorem prover at runtime.

Compiling and linking is performed in the usual manner. The software engineering environment
tools to support the process of generating the correct version of an application as well as assisting in
compiling of IMPORT programs is described in Chapter 4.

44

meoirr

I Ibe

obje II

*jedt I I - I object

contilro
object

SEE GOOD
(Object

Repostory)

Figure 17. Components of the Analysis Phas.

45

id_semaozic_controler

currLmoadle : id.Modulc
imporlecmodule : id_Module
current-metod: idMethod
parmioype : enumetion
curenLpwjat mex : symtab.entry-jis
cumntrperm"ype : type.expremion-list
current-medIs : idoodbiist
current_ claes: id-oodbJiut
curent_telmethods : id oodb list
is.public : boolean
is_overridden : boolean

inmortModule
build-...

FIgure 1. The Id semantic controller Class.

The DOME Runtime Interpreter Interface

A goal of IMPORT/DOME is to provide the ability to make design trade-off decisions between the
efficiency of imperative code, and the intuitiveness of declarative code. The integration between the two
programming styles is achieved through: shared data-types and data structures. This is done by having
a common symbol table, runtime type-checking, and direct manipulation of objects in the object repository
by the DOME theorem prover.

Launching a Query

The DOME theorem prover is started whenever a QUERY method of an object is invoked. At
compile time, each QUERY method invocation is translated into a call to the theorem prover with the
appropriate expression denoted by the method and its parameters. An expression structure that can be
used by the theorem prover is built at runtime into the object repository or a runtime database. The
theorem prover then attempts to unify the expression with the knowledge base of the object whose method
was invoked.

QUERY methods must have a mechanism to permit them to communicate values found in the
imperative (compiled) code to the knowledge base. They must also return values from the knowledge base
to variables located in imperative methods. This is done by passing parameters as arguments to QUERY
methods. If a parameter is designated as an INOUT parameter, the theorem prover can assign a value to
it (when it successfully unifies the QUERY expression). This permits the value to be assigned to a
variable in the imperative code.

Shared Data-Types and Data Structures

To reduce data impedance between the theorem prover and the compiled code, two data-types
(enumerated types and LISTs) are shared. These type structures may be accessed by both the compiled
code and the theorem prover. Other first class data-types: INTEGERs, REALs, STRINGs, and CHARs,
can also be passed as arguments to the theorem prover. This necessitates an UNINSTANTIATED value
for all variables, so that they may contain the results of unification returned by the theorem prover.

46

The use of a ,-rsistent object repository or a runtime database allows the theorem prover to be
disassociated with the compiled code, so it can run as a separate process, and interact with compiled code
only through the persistent database and perhaps an inter-process socket. Several applications could be
served in this manner, or perhaps several different interpreters with different unification strategies could
be used by a single application.

Enumerated Tvyes. Traditionally, symbols in an interpreted Prolog-like language, such as DOME,
have no semantics beyond the fact that they can be used to satisfy some unification rule. In IM-
PORT/DOME, all symbols that may be returned or used in imperative code have to be declared as part
of an enumerated type. Hence, each symbol is associated with a type and an ordinal value. These
semantics are very important since the result of a unification can now be used in comparisons or as array
indices in imperative code.

Lists. LISTs are basic structures in the theorem prover. All expressions that the theorem prover
manipulates are LISTs. LISTs are first-class data-types in IMPORT/DOME and may be passed as
parameters to QUERY methods and received as results of a unification.

Runtime Type-Checking. Since the symbol table from the imperative code is stored in a object
repository, runtime type information is available to the theorem prover. This means that after a symbol
has been unified, the theorem prover can use the symbol table to find the relevant type information and
check to see if it is of the type expected for the parameter of the QUERY method. If there is no type
conflict, then a successful unification is assumed, and the semantic value of the symbol is returned.

Direct Manipulation of Object

The theorem prover should go beyond reasoning about the fixed set of clauses in the knowledge
base of the local object (the object whose QUERY metlod launched the computation). It should be able
to provide different solutions based on some current state of the world. This state would presumably be
provided by the data members of the local object and some other objects "known" to the local object.
Since these objects can be stored in a database, they are accessible to the theorem prover, which can
translate their state into some form suitable for unification.

This aspect of the language is still under investigation, and it has not been determined how we can
"introduce" one object to another so that the first object may use the second object's state in the reasoning
process. Current proposals include the use of automatically created class extents, from which an object
may find a relevant instance that should be included in its knowledge.

Simulation Runtime Support

This section describes the nmtime system for the IMPORT language, which is a sequential
implementation for single processor environments. The runtime libraries and scheduler were developed
using the AT&T task classes and collections classes from the tools.h++ commercial package produced
by Rogue Wave Software (1992). Rogue Wave allows the binary libraries to be distributed as part of
another application without restriction.

Semantics of Simulation Constructs

The design of the runtime system is motivated by the requirements of the simulation time passing
and synchronization constructs of IMPORT. The semantics of each of these constructs is described below.

47

SIMTIME. SIMTIME returns the current time according to a user-defined simulated scale.

TELL Method Invocations. Each TELL method invocation results in the creation of a new thread
of control, which semantically is assumed to exist concurrently (in simulated time) with the activation
that made the invocation. Furthermore, this new thread of control may or may not become synchronized
with some other thread of control executing in the system, depending on the nature of the invocation
mechanism. Thus, the runtime system must provide support for creation of an asynchronous thread of
control (which executes the code body of the TELL method), and allow for subsequent synchronization
of this thread. The synchronization constructs provided in the IMPORT language take the form described
below.

WAlT DURATION Statements. Simulation time elapses by the execution WAIT DURATION
statements, which cause the current thread of control to yield control to another ready thread and to
resume execution either when the specified duration of simulated time has elapsed, or if the wait is
interrupted. The language allows different actions to be specified depending on the cause of the
resumption. Thus, the runtime system needs to provide support for suspending executing threads, and
resuming at different points in the code.

WAIT FOR (TELL Method Invocation). This is one of the synchronization constructs provided in
the language that allows the invoking thread to wait for the termination of the invoked thread. A thread
is assumed to have terminated when its execution encounters a return from the corresponding method
body. The language allows the wait to be interrupted by the following constructs, which requires the
runtime system to provide support similar to that required for the WAIT DURATION statement. A record
of the activity (waiting for a duration of simulation time to elapse, or for another TELL method to
terminate) needs to be kept that associates the waiting thread with the activity it is waiting upon. Since
both WAlT FOR and WAIT DURATION statements can also appear in ASK methods, the notion of a
thread needs to be well defined so as to record all activities happening as part of the same thread at the
same place.

WAIT FOR TRIGGER To Fire. This is another synchronization construct used to synchronize a
group of threads. All threads wait on a special runtime object called the Trigger and resume operation
when another thread executes the Fire method of the Trigger object. Support similar to the previous
statement needs to be provided in the runtime system.

INTERRUPT and INTERRUPTALL. The language provides constructs for asynchronously
resuming a thread of control that is either waiting for a duration of simulated time to elapse, or is waiting
for the termination of another thread. The interrupted thread is specified by the TELL method name
associated with the thread, and the object instance on which the method has been invoked. This requires
the runtime system to categorize the different thread activities by the type of the TELL method. The
semantics of the INTERRUPT constructs specify that the thread to be resumed is the one that is likely to
resume the earliest, provided its wait is not interrupted. Thus, some notion of when an activity is likely
to complete should also be present in the activity records.

TERMINATE. A thread terminates itself when it executes the TERMINATE statement. The
runitime system needs to ensure that when a thread terminates, the TERMINATE is propagated recursively
to all threads that are waiting on this thread.

48

Details of the Implementation

The runtime system has been built using the AT&T task library, which provides support for the
management of lightweight threads of control. Figure 19 shows the overall structure of the runtime
system.

The encapsulated region shows the functionality that the AT&T tasking package provides: it takes
care of scheduling threads that are not waiting on other activities. The suspension and resumption of
threads that are effected by switching the contexts of two threads are all provided by the task library.

A thread gets created whenever a TELL method is invoked. The different activities correspond to
the execution of WAIT DURATION and WAIT FOR statements. The main components of the
implementation are discussed below.

Activity Records. To ensure uniform treatment of both WAIT DURATION and WAIT FOR
activities, the implementation treats the activity corresponding to WAIT DURATION also as being an
activity that is waiting for a thread to terminate. This effect is achieved by creating a Timer thread that
terminates after waiting for the specified duration of simulation time to elapse. Thus, all activities initiated
from threads created as a result of user-specified TELL methods wait for the termination of either Timer
threads, or other user threads.

Each activity record has three fields: an identifier for the thread requesting the activity, the thread
being waited upon, and an estimate of the time when the activity is likely to complete. It is possible to
accurately record the termination time for WAIT DURATION activities; however, WAIT FOR activities
do not lend themselves to a similar situation. The implementation sets the estimated time for termination
of WAIT FOR activities to be set to the time of initiation of the activity.

Activity Table. Whenever an activity is initiated, an activity record gets stored in the Activity Table
corresponding to the thread that initiated the activity. Activity Tables associate all the activities
corresponding to threads created by TELL method invocations on a particular object. These activities are
categorized by the name of the TELL method that creates the thread. Furthermore, the activities are
ordered with respect to the estimate of their termination times.

Activity Tables are queried whenever the activities corresponding to a TELL method of a particular
object are interrupted via the INTERRUPT or INTERRUPT-ALL statements.

Task-Activity Table Associations. It is important to understand what it means to interrupt an
activity corresponding to a TELL method invocation on a particular object. TELL method invocations
create threads, which in turn initiate activities whenever WAIT DURATION and WAIT FOR statements
are executed. Note that these statements could be encountered in the body of the TELL method whose
invocation created the thread, or any ASK method that was invoked from this TELL method. A
distinction needs to be made between the Activity Table of the object whose method is being currently
executed, and the Activity Table of the object whose TELL method invocation created the thread. All
activities initiated by a thread should be stored in the Activity Table corresponding to the. latter. Since
the information about the parent class of the TELL method is lost once we exit the scope of the TELL
method body, information about the proper Activity Table to record all activities in must somehow be
inferred given the thread identifier. The Task-Activity Table Associations record this relationship.

List of Garbage Tasks. Reclamation of storage allocated to threads and their entries in the various
tables is an important issue. Storage corresponding to threads created as a result of WAIT FOR activities
is very easy to reclaim: the storage is returned to the heap when control returns to the initiating thread.

49

AT&T TASKING PACKAGE

TASK SCHEDULING QUEUE

./ TASK.,..
*............ -..

.........

AACTIVITY TABLE UV GARBAGE TASKS
ASSOCIATIONS ACTIVITY TABLE

Figure 19. Overall Structure of the Runtime System.

However, asynchronous invocations of TELL methods pose a problem, since there is no way of detecting
when these invocations terminate. The implementation supports a primitive garbagoe-coliection facility,
which consists of: (1) recording the creation of a thread duc to an asynchronous invocation of a TELL
method, (2) moving of the thnrea to a list of garbage tasks whenever the thread terminates (done by the
thread itself), and (3) releasing the storage associated with terminated tasks, whenever the garbage task
list is found not to be empty.

The association tables, and the sorted list of activities stored in the Activity Table have been
implemented using the classes provided by the Rogue Wave Class Library.

The main protocols used in the implementation are described below. A thread starts executing under
the control of the AT&T task library whenever a class derived from the base class task is instantiated.
A thea waits on other threads by invoking a method of class task, resultis 0). This causes the
initiating thread to get stored in the list of pending threads at the initiated thread. When the intiated
thread terminates, all pending threads are activated.

Initiating an Activity. An activity record is created and inserted into the Activity Table
corrsodn to the initiating thread. The initiating thread then synchronizes with the initiated thread

50

using the resultis () method. The status of te resultis () call can be used to determine whether
a particular activity completed, was interrupted, or encountered a TERMINATE statement. In all cases,
the storage associated with the initiated thread is returned to heap after control returns to the initiating
thread.

Terminating a Thread. When a thread executes a TERMINATE statement, it causes all calls to
result is () for this thread to return a status indicating that it was terminated. This status has the effect
of recursively terminating all threads that were pending on a terminated thread.

Interrupting an Activity. The semantics of the INTERRUPT and INTERRUPT-ALL statement call
for interrupting an activity corresponding to a specified TELL method invocation of a particular object.
The activity to be interrupted is obtained by looking up the Activity Table and picking up the most
imminent activity categorized under the specified TELL method. If the activity corresponds to waiting
on a Timer thread, then it can be interrupted outright, and the space reclaimed. However, if the activity
corresponds to waiting for the termination of another user thread, the semantics of INTERRUPT need to
be recursively propagated to this thread. Only when all threads being awaited for have been interrupted,
can the space corresponding to a particular thread be reclaimed.

The implementation provides all the runtime functionality through a set of macros that are called
in the generated code.

Code Generation

In addition to the use of the runtime macros whenever the IMPORT statements discussed in this
section are encountered, the following changes are required to generate code that can use the AT&T task
library:

* Each TELL method prototype is changed to return (task *) instead of void. The returned
thread pointer is used in the nntime macros to perform synchronizations on threads.

* The body of each TELL method is moved from the original method definition in the enclosing
class to the constructor of a new " TELL method class" which is derived from class task. This
is the essential interface with the AT&T task library that is required to create a lightweight task
whenever a TELL method is invoked. The original TELL method definition is changed to a
creation statement for the 'TELL method class."

* Each "TELL method class" constructor is enclosed in a mETHODPROLOGUE
EXIT-METHOD body, which takes care of setting up the association tables and reclaims space
on exit.

Extensions

The most important extension to the runtime system that has not been currently addressed is the
integration of real-time control with the simulation system. This can take the form of a graphical user
interface that is controlling the overall simulation system, which includes the user as one of its
components, and which might inject events into the system.

The AT&T task library provides support for real-time signal handling as part of the overall
simulation structure. It is conceivable that this be extended to meet the requirements of the above task.
The overall scheme (which needs refinement) for doing this would be to define a signal which models the
interface with the external world, and to define an interruptHandler task that contains the code for

51

what ought to happen when the signal does come through. User program threads need to wait on this
interruptHandler task after they have finished whatever was initiated by the previous event that was
injected into the system. The difficulty is two-fold:

1. Deciding when the previous event has finished processing, and causing all the user tasks to wait
upon this interruptHandler.

2. Ensuring that the processing in the simulation system suspends while waiting for the signal to
come from the outside world. This is related to the previous point since nonwaiting threads should not
be allowed to proceed ahead in simulated time.

Generic Object-Oriented Database Interface

Object-Oriented Database Management Systems (OODBMS) were developed to support application
areas that need to model complex data such as computer-aided design and manufacturing, and software
engineering. The IMPORT/DOME language system integrates object-oriented procedural and declarative
programming, simulation, and persistent programming. IMPORT is intended to be part of an integrated
software engineering environment. Therefore, it must provide for the storage and manipulation software
objects such as source programs, class definitions, libraries, compiled code, and intermediate
representations of the compiled code in a consistent manner to simplify the development of software
support tools. The availability of viable OODBMS, in a large sense, is responsible for, and made possible
by IMPORT/DOME. Its implementation is predicated on OODBMS technology.

Both commercial and public domain OODBMS were investigated for use as the underlying database
of IMPORT. From the beginning, it was decided not to tie IMPORT to any particular existing OODBMS.
Users of IMPORT with access to a commercial OODBMS may want to use it as the underlying database
for performance or other reasons. On the other hand, users without access to an expensive commercial
OODBMS may want to use a public domain system.

Considering the above factors, IMPORT was designed with a common OODBMS interface that
provides the necessary functionality. The interface was built using C++ and consists of classes that
provide database functionality such as database, directory, set, list, tree, set-cursor, list-cursor, tree-cursor,
configuration, workspace, and segment.

We have already hinted at the need for a common interface to the underlying OODBMS. The need
for a common interface to the underlying OODBMS of the system is explained in the next section.
Following that is a description of the database classes that constitute the Generic Object-Oriented Database
(GOOD) interface. This chapter concludes with a summary of the current status of and plans for future
work in this area.

Need for a Common Interface

One motivation for building a common interface to the underlying OODBMS of the IMPORT
system is that different users may need to use different underlying databases. While some users may want
to use a commercial database because of performance or other considerations, other users may want to use
a public domain database for cost considerations. By not tying the OODBMS interface to a specific
database system, the system can make use of new and improved OODBMS systems that may be available
in the future.

52

Another motivation for providing a common interface is the need to support persistence with the
IMPORT language itself. This approach permits the use of the common interface as the mechanism to
achieve persistence in IMPORT in a consistent manner, and to provide for portabilitiy as well.

The common interface provides a mechanism that allows the differences between the underlying
database implementations to be hidden from the user. Features that are in the common interface but not
in the underlying database can be built on top of the database. Also, the common interface can be made
simpler than that of the underlying database by assuming away some of the details of the underlying
database system.

Several commercial systems were reviewed: ObjectStore (Object Design 199 1), the ARPA OpeaDB
(Wells, Blakely, and Thompson 1992), the ITASCA distributed object database management system
(ITASCA Systems 1991), and a public domain database, the Object System of STONE (OBST)
(Forschungszentm Informatik 1992). The ObjeciStore database system is a powerful commercial
3ODBMS that provides three interfaces to the database, namely a C interface, a C++ interface and
ObjectStore's proprietary Data Manipulation Language (DML) interface. It has a variety of features
including collections, sets, lists, bags, versioning, workspaces, and performance features like clustering of
objects. We are an alpha test site for the ARPA OpenDB, developed by Texas Instruments, and have only
recently begun exploring this system, but its open design and modularity seem well suited for our
purposes. The Object System of STONE (OBSTV is a public domain system which provides a C++
interface to the OODBMS. It also has features like collections, sets, lists, bags, and clustering, but lacks
facilities for version management in its current release. A special and useful feature it provides is the
directory facility that can be used to manage named objects in an UNIX-like directory hierarchy.

The GOOD Common Interface

Based on a review of existing OODBMS capabilties and interface designs, the GOOD was
developed with the hopes of spanning several systems. The GOOD common interface to the OODBMS
of the IMPORT system was specified using C++ classes. Classes such as database, directory, collection,
set, list, tree, lisLcursor, set_cursor, tree-cursor, segment, configuration, and workspace provide the
necessary database functionality. The main functionality of the various classes is described here;
Appendix D contains a more detailed description.

The database Class. Databases serve as stores for the objects created by an application. A database
is created by sending the message create to the database class. Messages such as "open", "close",
"look-up" are available for opening, closing, and looking up a database respectively. A database object
is specified as a parameter to the persistent version of the C++ new operator, the DNEW. The DNEW
macro has syntax and semantics similar to that of C++ new operator, in that it takes as an argument a
database object and creates the new object in the specified database.

The directory Class. The "directory" class facilitates naming of objects, retrieving of named objects,
and organization of named objects of a database in a UNIX-like directory hierarchy. A database is
provided with a root directory ("C") at database-creation time. Other directories may be created by the
application using the "mkdir" message. Messages are available for inserting named objects into directories
("insert"), retrieving named objects ("lookup"), and removing named objects from directories ("rm').

The list Class. A list is an aggregate object whose members are maintained in the order in which
they were inserted. Messages are provided to facilitate inserting elements in the beginning or at the end
of a list ("inserLfirst" and "insertlast"). Selecting all members of a list that satisfies a certain predicate
is possible using the "query" message, which takes as argument a boolean-valued expression that operates
on the data fields of the members of the list. Members of the list that return true when the boolean

53

expression is applied to it are returned by the method. A cursor type called "list_cursor" is available for
iterating over lists.

The set Class. A set is an aggregate object whose members are not maintained in any particular
order. Messages for inserting and removing elements (insert and remove) are available. A query message
similar to the one in the list class is available for the set class also. The set cursor class facilitates
iteration over members of a set.

The tree Class. The tree class provides a mechanism for building multiway rooted trees. Most of
the functionality of trees is provided through the treecursor class.

The list cursor Class. A list cursor object is used to iterate over members of a list. It is created
for a particular list object using the create message, which takes a list object as its argument. A list cursor
object points to the first element of the list initially. Thereafter, the remaining elements of the list can be
visited in orcler by sending the next message to the cursor. Messages last and previous are also available
to traverse the list in the reverse order.

The set cursor Class. A set cursor object is used to iterate over the members of a set. It is created
for a particular set using the create message, which takes a set object as its argument. It points to some
arbitrary element of the set initially. Thereafter, all the elements of the set can be visited by sending the
next message repeatedly to the cursor until the cursor points to a null object.

The tree cursor Class. A tree cursor object is used to traverse a tree in a manner des cd by the
user. Like the list cursor and set cursor objects, a tree cursor object is also created for a specific tree
object. A tree cursor object points to the root of the tree initially. Thereafter the user can traverse the
tree using messages such as first_child, nextsibling, preysibling, first_sibling, and parent. Messages are
also available for adding children to a node of the tree (add_child) and removing leaves from a tree
(remove).

The configuration Class. A configuration is a grouping of objects that evolve at the same time.
In other words, a configuration is the granularity at which versioning can be done in the system. An
object is made a member of a configuration when the object is created using the CNEW macro. The
CNEW macro creates an object in a configuration as opposed to the DNEW macro, which creates it in
a database. A new version of a configuration is created by checking out a configuration to a private
workspace using the checkout message, and checking it back in using the checkin message. This model
supports versioning of the latest versions of a configuration, as well as versioning of older versions of a
configuration, thus allowing branching version sets possible.

The workspace Class. Workspaces allow different groups of users to perform their work without
interfering with each other. All configurations initially belong to a global workspace. A global workspace
is created using the message createglobal and child workspaces are created using the message create.
Configurations are checked out to the child workspaces using the checkout message of the configuration
class. The setcurrent message sets a workspace as the current workspace. Only configurations checked
out to the current workspace may be manipulated by the user.

The segment Class. Segments are contiguous chunks of disk space and are used to cluster objects
for the purpose of disk storage and retrieval efficiency. Objects that are expected to be used as a group
by applications are placed in the same segment when they are created, using the SNEW macro.*

"The SNEW macro takes a segment object as argument and creates a new object in the specified segment.

54

Cu'rent Ssanw and Future Work

The GOOD interface was implemented for the ObjectStore and has been used to implement
IMPORT. An implementation for the OpenDB has begun. The OBST system is a candidate as well.
Reviews of other OODBMS to support IMPORT continue.

55

4 FUTURE WORK

Coeeept DeveIpmmt

IMPORT is being developed concurrently with other applications as Persistent ModSim and ModLog
are being fielded. These applications can be readily ported to IMPORT, so that they will be invaluable
in testing and in determining needed extensions. As the product enters into testing, newly revealed
requirements will give direction to future work.

A number of features found in other languages suggest avenues for research. For example, the class
notion might be extended to support static fields and methods, as in C++. The introduction of generics
is another. An implementation of the association concept from OMT has some precedence in research
literature (Rumbaugh 1987), and would permit a direct mapping from OMT style design into code. The
concept of the back-pointer of ObjectStore is a limited implementation of association. Reflection
capabilities have been shown to be quite powerful especially for distributed actor computational models
and for constraint programming (Foote 1989).

Note that the current implementation is a "first-pass" and must be reworked into a more robust
design. The SEE classes are the beginnings of a framework for persistent compilation. For example, the
current implementation uses the union structure to discriminate ast nodes. This is not an object-oriented
approach. Methods for each language construct exist in the current id_semantic_controller class and its
inverse, the id-code-generator class. A more flexible object-oriented approach is the "Walker" design
pattern (Gamma 1993). In this approach, each ast node has a "Traverse"' method that takes a "Walker"'
object as an argument. Each ast node would have one method that is sent to a walker passing the node
as an argument. The walker is then responsible for acting on the node. This approach keeps the
underlying representation simple and collects all the operations on it, in one place. Many other design
patterns could be equally beneficially when applied to the classes.

A major piece of work that must be done to support practical applications development is to
construct an extensive set of class libraries. The INTERFACE module facility and the availability of large
bodies of existing C and C++ code should make this task easy to accomplish.

The current simulation runtime is a sequential model. Also being evaluated are implementation
strategies for parallel runtimes, such as Time Warp (Jefferson 1985). Another possible approach is the
extension of object database facilities to support efficient roll-back mechanisms using fine-grain versioning
(Herring 1991). The general area of Parallel and Distributed Simulation (PADS) is also an active field
of research that offers many new approaches (Steinman 1992). Future research will include creating
extensions to the nntime to support real-time device control, as discussed in Extensions, p 51.

Many issues relate to the database-centered implementation of IMPORT. The use of the object
repository has opened up many research avenues in configuration management (Kalathil 1993). Also, the
Common Object Request Broker Architecture (OMB 1991) combined with the high band width supported
I he Defense Simulation Internet offers an approach to support distributed interactive simulation (Martin
1992). IMPORT could be implemented as a language server with programming interfaces (editors) serving
as clients in a heterogeneous network compilation environment.

56

Integrated Simulation Language Environment

The IMPORT/DOME language is one of a number of tools that comprise the Integrated Simulation
Language Environment (ISLE). The tools in the ISLE environment All interact with the persistent object
repository. The object repository is the heart of the environment, and stores information about the class
hierarchy, the programs under development, and the results of program execution; all at the object-level
of granularity (as opposed to the file, or function-level granularities that exist in most systems). Figure
20 shows the flow of information between components of ISLE.

The object repository (OR) is currently realized by using a commercial object-oriented database.
Already defined is a set of generic access primitives (referred to as Generic Object-Oriented Database, or
GOOD) that isolate ISLE from dependence upon any particular database. Currently, the generic interface
supports ObjectStore (Objectstore 1991), and ARPA's OpenDB (Wells 1992). The Obst object-oriented
database (Stone 1992) is being evaluated as a possible host.

An object framework of classes has been defined that model the intermediate forms of the
IMPORT/DOME compilation structures. These classes constitute the basic data structures necessary to
support the software engineering environment. They permit storage in the object repository of the
IMPORT/DOME programs, and provide a common access mechanism for the entire ISLE toolset.

Storing programs at the object-level of granularity allows new approaches to configuration
management and version control by allowing a finer control of the relationships and interdependencies
between objects than is available through file-based systems. The ISLE Versionarian maintains a
dependency network between object artifacts in the object repository and mediates access for the other
ISLE tools. The object repository organizes versions of modules into compatible configurations. The

Browser

Interpreter Parsers

Debugger exs'one°ati Unparser

SProfiler r• E- Editor

Optimizer Librarian

G oeneao Libraries

Figure 20. Components of the ISLE Architecture.

57

Versioanarian uses both information about dependencies between software objects and about the differences
between versions of software objects to automate a number of configuration management activities,
including: determining if a certain configuration is compatible, generating a set of compatible configura-
tions satisfying certain criteria, and determining the impact of proposed changes to a software object in
a configuration (Kalathil 1993).

A Compilation Manager (CM) assembles an executable program from the network of objects within
a configuration. It interacts with the Versionarian to ensure that a consistent network of source objects
are selected. It is also responsible for optimizing the virtual methods to eliminate the overhead associated
with function-table lookup when the methods are not overloaded. The Compilation Manager can use the
capabilities of the Versionarian that maintain dependency information at object-level granularity to facili-
tate the implementation of smart recompilation algorithms (Tichy 1986).

Many of the tools, e.g., the Interpreter, Debugger, and Profiler, depend on the Compilation Manager.
The interpreter provides an interactive environment for exploratory (or bottom-up) programming. The
Debugger helps identify and correct programming problems. The Profiler helps create efficient programs
by alerting the user to the most computationally intensive methods. All of these tools interact with the
object repository (through the CM and Versionarian) and operate from the intermediate form of IMPORT/
DOME programs.

The remaining tools work to convert source input into the intermediate representation, and currently
consist of the IMPORT/DOME parser, the unparser, editor, and librarian. The parser takes object
specifications as input and, working in conjunction with the Versionarian. places intermediate-form objects
into the object repository (Figure 20). The unparser retrieves intermediate-form objects and translates
them back into source for the editor. The editor understands the syntax of the language, and supports the
direct manipulation and editing of these intermediate-form objects. Finally, the librarian is a know-
ledge-based programming assistant that helps the user to navigate the class hierarchy and find applicable
object definitions.

58

5 SUMMARY

This work has described IMPORT/DOME, a new language system designed and implemented to
provide full integration of previously developed software technologies to support general modeling and
simulation. IMPORT is an integrated application of an object-oriented, imperative and declarative pro-
gramming language that combines process-based discrete-event simulation and persistent object storage
to address large-scale, complex systems modeling.

IMPORT is characterized by the following:

0 It introduces two new module types: the KNOWLEDGE and the INTERFACE modules.

* Records, procedures, pointers, and subrange types have been removed from IMPORT.

* IMPORT is a strongly typed language, and variables, constants, classes, and methods must be
declared before being used.

* Method bodies are the only places where imperative or declarative code can be found.
• IMPORT uses dynamic memory management--built-in procedures for the creation of object

instances.

* IMPORT inherits, and augments, the built-in procedures and finctions of ModSim.

* At present, IMPORT depends of Standard Libraries for simulation support and persistence.

* IMPORT is a fully functional programming language with an implementation based on an
object-oriented database.

The current implementation of IMPORT is a "first pass," being further developed as other applica-
tions are being fielded. As product is being tested and validated, new avenues for research and product
improvement are being defined and explored.

REFERENCES

Ada 9X Requirements Rationale, Ada 9X Project Report (Office of the Under Secretary of Defense for Acquisition, Washington,
DC, 199).

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman, Compilers, Principles, Techniques, and Tools (Addison-Wesley, 1986).

Atkinson, M.P., et al., "An Approach to Persistent Programming," Readings in Object-Oriented Database Systems (Morgan
Kaufnann, Palo Alto, CA, 1989).

Brown, Alan W., Object-Oriented Databases: Applications in Software Engineering (International Series in Software Engineering)
(McGraw-Hill, 1991).

CACI Products Company, ModSim !1: The Language for Object-Oriented Ptogramming (CACI Products Company, La Jolla, CA,
1992).

59

REFERENCES (Cesd)

Chi Guan Teao Joseph, Construction of a Two-Phase Compler Using an Object-Oriented Database, Master's Thesis (University
of linois at Urbana-Champaign, 1992).

Dart, Susan A., Parallels in Compsr-AidedDeuign Framework and Software Development Efforts, CMU/SEI-92-TR-9 (Software
Engineerng Insgitute, Carngio-Mellon University, May 1992).

Deparmuent of Army, Army Technology Base Master Plan, Vol I and 2 (February 1992).

Director of Defense Research and Engineering, DoD Key Technologis Plan (July 1992).

DOD Simulations: Improved Assessment Procedues Would Increase the Credibility of Results (United States General Accounting
Office, Washington, DC, 1987).

Foote, Brian, and Ralph E. Johnson. "Reflective Facilities in Smalltalk-80," Object Oriented Programming: Systems, Languages.
and Applications (October 1989).

Herring, Charles, Biju Kalathil, and Joseph Too. Research in Persistent Simulation: Persistent ModSim, Draft Technical Report
(USACERL, 1993).

Herring, Charles, Jeffrey Wallace, and R. Alan Whitehurst, Application of Object-Oriented Programming to Combat Modeling
and Simulation, P-91/46/ADA242673 (USACERL, September 1991).

Herring, Charles, and R.A. Whitehurst, "Adding Persistence to An Object-Oriented Simulation Language," Societyfor Computer
Simulation Multiconference on Object-Oriented Simulation (Simulation Councils, Inc., San Diego, CA, 1991).

Herring, Charles, and R. Alan Whitehur/t, Leaer Report to U.S. Army TRADOC Analysis Command (USACERL, 1991).

Jefferson, David, Fast Concurrent Simulation Using the Time Warp Mechanism (Society for Computer Simulation, San Diego,
CA, January 1985).

Kalathil, Biju J., and Charles Herring, System Support for Assembling Compatible Conflgurations in an Integrated Programming
Environment (Submitted to Software Configuration Management, May 1993).

Krasner, G.E., and S.T. Pope, "A Cookbook for Using the Model-View-Controller User Interface Paradigm in Smalltalk-80,"
Journal of Object-Oriented Programming (August 1988), pp. 26-49.

Lubars, M., and M.T. Harandi, "Knowledge-Based Software Design Using Design Schlmas," Proceedings of the 9th International
Conference on Software Engineering (March 1987), pp. 253-262.

Moss, J.E.B., "Object-Orientation as Catalyst for Language-Database Integration," Object-Oriented Concepts. Databases, and
Applications (ACM Press, Reading, MA, 1989).

ObjectStore Technical Overview (Object Design, Inc., 1990).

ORB Task Force, The Common Object Request Broker: Architecture andSpeccation, OMG Document Number 91.12.1 (Object
Management Group, December 1991).

Rumnbaugh, James, "Relations as Semantic Constructs in an Object-Oriented Language," Object Oriented Programming: Systems,
Languages, and Applications (October 1987).

Sterling, Leon, and Ehud Shapiro, The Art of Prolog (MIT Press, Cambridge, MA, 1986).

Tools.k++: Introduction and Reference Manual, VS.1 (Rogue Wave Software, Inc., Corvallis, OR, 1992).

Wells, David L., Jose A. Blakeley, and Craig W. Thompson, "Architecture of an Open OODB," IEEE Computer (October 1992).

Whitehurst, R. Alan, Charles Herring, John Piet-zak and Joseph Too, "Integrating Object Technology for General Purpose
Simulaton," Object Oriented Programming: Systems, Languages, and Applications (October 1993).

60

Rwermce (Cm.d)

WhitsUuI. R. Alan, "Simulation Utilizing an Interpretive Objec-Oriented Rule-Band Approach," Object-Ornexd Sumuem
(Computer Simulation Society, January 1991).

Zdonik. S.. and D. Maier, Readings in Object-Oriene Databaw (Morgan Kaubmann, San Mateo, CA. 1989).

61

Appendix A

IMPORT Context Free
Grammar

This appendix contains the context free grammar for IMPOtT. The syntax
is represented in the concise Bachus-Naur Form. No semantics are attached
to the symbols. The following regular expression operators are used as a
notational convenience.

An asterisk (*) denotes 0 or more symbols.
A plus (+) denotes 1 or more symbols.
A question mark (?) denotes 0 or 1 symbols.

Terminal symbols (reserved words) are shown in all capital letters here.
However, the current IMPORT implementation is case insensitive to reserved
words. Identifiers cannot be reserved words. The start symbol is program.

A.1 Module Definitions and Import Statement

program - (definition-module
implementation-module

Iinterface-module
I key)+

definition-module -• DEFINITION MODULE identifier semi
(import-statement)*

Al

(constdecl I type.decl I objitype-decl)*
END MODULE period

implementationamodule-4, IMPLEMENTATION MODULE identifier semi
(import-statement)*
(obj-methodsdeI)"
END MODULE period

interface-module -- INTERFACE MODULE identifier semi
(extobj.methodsedecl)*
END MODULE period

key -- KEY identifier colon
FROM identifier CRFATE identifier
INVOKE identifier args period

import.statement - FROM identifier IMPORT (importjtemiist)+ semi

import-item-list -- importjteml importitem comma import-Jtemiist

importitem ---- (ALL)? identifier (as-item)?

as-item - AS identifier (I-paren enum-itemuist r-paren)?

enum-itemilist - identifier (AS identifier)?
I identifier (AS identifier)? comma enumitem-list

A.2 Constant Declarations

const-decl - CONST const-idilist

const-idiist -- const-id const-id-list
I ,

const-id -- identifier eql expression semi

A2

A.3 Type Declaration

type-decl -- TYPE typeidilist

type.idiist -. type-id type-idJist
I obj..typeed typeidJist
I

type-id -- identifier eqi type semi

type -• identifier
enum-type
INTEGER
REAL
BOOLEAN
STRING
CHAR
LIST
ADDRESS
ARRAY Ibracket integer r-bracket OF type

enum.type I- Lparen enum-typeilist r.paren

enum-typeiist - identifier
I identifier comma enum-typeiist

A.4 Variable Declaration

var.decl - VAR var.idiist

A3

varidiist -- varid semi var-idiist

varid -- identifier (comma identifier)* colon type

A.5 Object Definitions

obj.type-decl -- identifier eql OBJECT (super-classes)? semi
obj-type-body
END OBJECT semi
identifier eql OBJECT semi EXTERNAL semi
ext-obj.type.body
END OBJECT semi
identifier eql OBJECT semi FORWARD semi

super-classes I- Lparen super.classiist r-paren

super-class-list - identifier
I identifier comma super.class-list

obj.type.body -• field-methodJist
(privateilist)?

(overrideilist)?

field-method-list c
I var-id semi field.method-Jist
I method-prototype semi field.methodilist

private-list -* PRIVATE field-methodJist

A4

overrideJist - OVERRIDE field.methodilist

method.prototype - ask.meth-proto
tell.meth.proto
query-meth-proto
op.meth-proto
const-meth.proto
dest-meth.proto

ask.meth-proto - ASK METHOD identifier
parameters
(return-type)?

tell-meth-proto - TELL METHOD identifier
parameters

query-meth.proto -- QUERY METHOD identifier
parameters
colon BOOLEAN

op-meth-proto -- OPERATOR METHOD operator
parameters
(return-type)?

const-meth-proto -- CONSTRUCTOR METHOD Objinit

parameters

dest-meth.proto - DESTRUCTOR METHOD ObjTerminate ILparen r.paren

parameters -- Iparen (parameteriist)? r.paren

parameteriist - formal-parameter
I formal-parameter semi parameteriist

formal-parameter - IN varid
I OUT var.id
I INOUT varid

A5

return-type - colon type

operator -- times I divide J plus I minus I eql
I neq I LIgtrlgeqlassign
I pluseql I minuseql I timeseql I diveql

A.6 Object Declaration

A.6.1 Object Declaration in Implementation Modules

obj.methods-decl -i OBJECT identifier semi (method-decl)*
END OBJECT semi

method-decl -- method.prototype semi (var-decl I const-decl)*
statementblock METHOD semi

A.6.2 Object Declaration in Interface Modules

ext-obj.methods.decd -- OBJECT identifier (AS identifier)? (IN language)? semi
(ext-fleld.rename I ext-meth-proto)*
END OBJECT semi

language -- C++
IC

ext-obj.type.body -- varid semi extfield.method-list
I extdef-meth.proto semi ext-field-methodist-

ext-fleld-rename --- identifier (AS identifier)? semi

A6

extdef-.meth.proto --. askjmeth.proto
I op.meth.proto

I Con.tmeth.proto
I dest.meth-proto

ext-meth.proto - ext.askimeth.proto
I extop.meth.proto
I extconst-meth.proto

ext-dest-m•th.Proto

ext-ask-meth.proto - ASK METHOD identifier
(AS identifier)? semi (STATIC semi)?

ext-op-meth-proto -- OPERATOR METHOD operator
(AS operator)? semi (STATIC semi)?

extconst-meth.proto - CONSTRUCTOR METHOD ObjInit
(AS identifier)? semi (STATIC semi)?

ext-dest-meth-proto - DESTRUCTOR METHOD ObjTerminate
(AS identifier)? semi (STATIC semi)?

A.7 Expressions

assignment - location assign expression
location pluseql expression

I location minuseql expression
location timeseql expression
location diveql expression

expression - integer
real

I string

A7

char
list
location
NULL
UNINSTANTIATED

minus expression %prec uminus
exprea•mi minus expression
expression plus expression
expression times expression
expression divide expression
expression DIV expression
expression MOD expression
I-paren expression r.paren

I boolval
I NOT expression
I expression AND expression
I expression OR expression

expression eql expression
expression neq expression
expression Iss expression
expression leq expression
expression gtr expression
expression geq expression

askamethodinvocation
tellmethod.invocation
operator.methodinvocation
query.method-invocation
built in-func

location - (inherited-inherited-from)? identifier
I SELF
I location ILbracket expression r.bracket

A8

boolval -- TRUE
I FALSE

list -- Ibracket expresson (comma expression)* r.bracket

A.8 Method Invocations

inherited-from - FROM identifier

inherited-inherited.from -- INHERITED FROM identifier

method invocation -- asklmnethodinvocation

Stell-methodinvocation
I query-method-invocation

ask.method-invocation - ASK expression (TO)? identifier
argp (inheritedifrom)?

tell.methodinvocation - TELL expression (TO)? identifier
args (inherited-from)?

query-methodinvocation - QUERY identifier (ABOUT)? identifier
wrs (inherited-rom)?

args -* Iparen (arglist)? r.paren

argiist - (expression comma)* expression

A9

A.9 Built-In Functions

built.iniunc -~absj capi chartostri chri floatji nttostrl lower
I maxi maxofl mini minofi oddi ordi persistenti position
I realtostrl roundi schari strcatl strieni strputl strtoint
I strtoreall substri trunci upperi val

si utime

abs -~ABS I-paren expression r..paen
cap -'CAP 1paren expression r..paren
chartostr -'CHARTOSTR I-paren, expression r-paren
chr -*CHR 1paren expression r-.paren
float -'FLOAT L-paren expression r..paren
inttostr --- INTTOSTR L-paren expression r..paren
lower -bLOWER Lparen expression r..paren

max -MAX I..are scalar-type r..paren
maxof -. MAXOF I-paren argilist r..paren
min -'MIN L-paren scalar-type r-paren
minof -~MINOF I-paten argiist r..paren

odd -'ODD I-paren expression r..paren
ord -pORD L-paren expression r..paren
persistent -'PERSISTENT I-paren expression r..paren
position -. POSITION iparen expression comma expression r..paren
realtostr -~REALTOSTR L-paren expression r-paren
round -~ROUND L-paren expression r..paren
$char -,SCHAR I-paren expression comma expression r..paren
sirmtime -. SIMTIME I-paren r..paren
strcat -'STRCAT Lparen argiist r-paren
strIen -*STRIEN I-paren expression r-.paren
strput -~STRPUT L-paren argiist r..paren
strtoint -~STRTOINT L-paren expression r..paren
strtoreal -~STRTOREAL I-paren expression r..paren
substr -'SUBSTR I-paren expression comma expression comma

expression r..paren
trunc -~TRUNC L-paren expression r..paren

A10

upper - UPPER ILparen expression r.paren
val -- VAL Lparen scalartype comma expression r.paren

VAL I-paren identifier comma expression r.paren

scalar-type - INTEGER
I REAL
I CHAR
I BOOLEAN

A.1O Built-in Procedures

built-in.proc ---. abort I decl haiti disposel incl inputl insert
I newi outputl replacel strtochar
I interrupti interrupt-all

abort - ABORT
dec -* DEC Iparen expression r.paren

I DEC Iparen expression comma expression r-paren
dispose - DISPOSE lparen expression r.paren
halt - HALT
inc - INC I-paren expression r.paren

I INC I-paren expression comma expression r-paren
input - INPUT ILparen (argiist)? r.paren
insert - INSERT ILparen expression comma expression comma

expression r.paren
new -- NEW Iparen location (comma expression)? r.paren args
output - OUTPUT I-paren (argilist)? r.paren
replace - REPLACE I-paren expression comma expression comma

expression comma expression r.paren
strtochar - STRTOCHAR ILparen expression comma expression r.paren
interrupt - INTERRUPT ILparen expression comma expression r.paren
intervuptall - INTERRUPTALL ILparen expression coma expression r.paren

I INTERRUPTALL ILparen expression r.paren

All

A.11 Statements

statement -~assignrmnt

I method-invocation
I built.in..pro
I block-statement
Iif-statement
Icase-statement
Iwhile-statement
I repeat-statement
I firstatement
I oop..statemnent
I it-satement

return..staternent
terminate-statement
wait-statement

Itransaction-statement
Iabort.statemvent

statement-list -. statement semi statement-list

blocksatement -~BLOCK (const-ledec typ...decl)* statement-.block BLOCK

statement-.block -~BEGIN statementilist END semi

if-statement -. IF expession statement-list
(eisif.ist)?
(else-clause)?
END IF

elsifiist -~eluif-cdause

" -hLclaus eWsifist

A12

elsi.clause ---. ELSIF expression statementist

else.clause -• ELSE statementilist

casestatement - CASE expression wb.Jiist (otherwiselause)? END CASE

when-list - when.clause
I whendaus whenlJist

when-clause - WHEN case-label colon statementlist

otherwise-clause -* OTHERWISE statementiist

caselabel - integer
boolval
char

whilestatement - WHILE expression statementlist END WHILE

repeat-statement - REPEAT statementlist UNTIL eression

for-statement -- FOR location assign expression TO expression
(byclause)? statementJist END FOR
FOR location assign expression DOWNTO expression
(by-dause)? statementilist END FOR

by-clause - BY expression

loop-statement - LOOP statementilist END LOOP

exit.statement - EXIT

return-statement - RETURN (expression)?

A13

terminateJtatement - TERMINATE

wait-statement - WAIT DURATION expression statement-list
(interrupLtlause)? END WAIT
WAIT FOR eXession TO identifier arg$ (inherited-from)?
statement-list (interrupt-lause)? END WAIT

I WAIT FOR TRIGGER expression

interrupt.clause -- ON INTERRUPT statement-list

transactionstatement--. TRANSACTION statement-list (abort.clause)?
END TRANSACTION

abort-clause - ON ABORT statement.ist

abort-statement - ABORT
I ABORT ALL

A.12 Query Statement

query.statement -- querygoal period
I (IF)? nuery-goallist

THEN querygoal period

query4oallist - query4oallist query-connector query4oal
I query-oal

querygoal -. identifier.
identifier ILparen query-goallist r.paren
identifier assign query.implexpr
integer
real
char
string
ILbracket ribracket

A14

I query..conslist

query. conslist -~Lbracket query..consexprtist r..bracket
1-bracket query-consexpdist '-' identifie r..bracket

query-.consexplist -*query...cnseprist comma query-.consexp
query..consewp

query..consexpr -. query-goal

query..simexprlist -. query..simexprlist query-connector query..samplexp
I quer-mplewp

query..simplexpr -. queay-tam query-addop query..term
I query-term

query-addop -. plus
minus

queay-term -pqueryiactor query-mulop query-factor
I queryiactor

query-mulop -atimes

I divide

query-factor -. integer
I real

identifwe
14Lpaen query..smplexp r-paren

I identifwe L-paren query~smexprist r-paren

query. connector -~AND

comma

A15

A.13 Comments

comment . nested-comment
I singleiline-conmment

nested-comment -- (Lbrace nested-comment r.brace)+

singleiine-comment--, minus minus (any-character)*

A.14 Operator Symbols

times ---. *

divide -- /
plus +
minus - -
eqi -- -
neq <>
ss - <
leq - <-
gtr --- >
geq --- >=
assign
pluseql -- + :
minuseql -- - =

timeseql ---. =

diveql

A.15 Punctuation

All symbols on the right hand side are terminals.

I-paren --- (
r-paren
semi
colon

A16

comma
Lbracket -

rlwracket I
brwace-.{

r-beace -

period

A17

Appendix B

IMPORT Database Class
Library

Support for persistent object storage in IMPORT is provided through a li-
brary of pseudo classes. These classes were first prototyped in the PERlSIS-
TENT MODSiM development effort [131. They were further refined in the
Generic Object Oriented Database (GOOD) interface developed for imple-
menting IMPORT described in Appendix ??. These IMPOnT pseudo classes
are implemented through use of the GOOD interface. Hence, persistence in
the IMPORT language is supported through the same underlying mechanizm
as is its implementation. Porting the GOOD to other database hosts ports
the langauge manipulation facilities (parser, code generator, etc.) as well as
the language's ability to manipulate persistent storage.

B.1 Overview

It became apparent in the development of PERSISTENT MODSIM that it
is necessary for programmers to know and understand the consequences
of object persistence. This capability dramatically changes the manner in
which progranis are designed and implemented. Therefore it was decided
that more access to the underlying database functionality was required and
that it be presented to programmers in a consistent marner. We chose to
provide the interface to persistent storage in PERSISTENT MODSIM through
use of a database class library. This same approach is taken in IMPORT.

Through the database class library the essential features of database
functionality are presented as objects to the user. This approach is widely

B1

used and permits control over how much detail of the underlying database
model is revealed. The class library represents a simplified model of object
database. This is consistent with the object paradigm of adding extended
features through classes that can be inherited from. It permits programmers
the flexibility to develop further specializations based on this model for spe-
cific purposes. A consequence of this approach is the necessity to introduce
two new concepts into the language in the form of extended syntax. These
two extensions are concerned with the specification of persistent allocatiou
of objects (the overloaded NEW) and transaction management (the TRANS-
ACTION statment) to permit concurrent access to databases by multiple
users.

This appendix provides documentation of the database model of ImaPonT.
The model consists of a set of classes representing database functionality
to the programmer. The database class library consists of the following
classes: Database, Directory, Segment, Collection, Cursor, Configuration,
and Workspace. Each class is implemented as in separate DEFINITION file
which can be imported into any IMPOitT program. These classes have no
restrictions on them, they can be inherited from and their methods overrid-
den as necessary. However, there are no corresponding IMPLEMENTATION
files. The code implementing these classes is contained in the GOOD.

B.2 Databases

IMPOitT variables of the object type (class) Database represent databases.
Databases can be thought of as files that store objects. In an IMoP T
program, an instance of a Database object is associated with one physical
database at any given time. Database objects have no fields-only methods.
These methods implement the basis notions associated with database op-
erations. The methods of database objects include create, open, close, and
delete. There are methods for determining the status of the database as
well as methods associated with the functioning of the other classes in the
database library.

The class database allows programs to create and manipulate persistent
objects. Instances of this class are used a parameters in calls to NEW to
specify were new persistent objects will be allocated. An open count is
maintained for each database and represents the number of times it's Open
method was called during the current process. When the open count is set
to 0 tle database is closed. All databases are automatically closed when the

B2

program terminates. Object instances of this class need not be persistent
themselves. The definition module for the Database class is show below.
Following is a description of the methods of this class.

DEFINITION MODULE Database;

FROM DatabaseRoot IMPORT DatabaseRoot;
FROM Segment IMPORT Segment;

TYPE
Database =
OBJECT

ASK METHOD AllowExternalPointers();
ASK METHOD RoorDirO: Directory;
ASK METHOD Create(IN pathnam. : ARRAY OF CHAR;

IN mode : INTEGER;
IN if-exists.overwrite : BOOLEAN);

ASK METHOD Destroyo;
ASK METHOD Open(IN readOnly : BOOLEAN);
ASK METHOD open(IN pathname : ARRAY OF CHAR;

IN readOnly : INTEGER) : Database;
ASK METHOD CloseO;
ASK METHOD GetPath~ame(OUT pathjame : ARRAY OF CHAR);
ASK METHOD Lookup(IN pathname : ARRAY OF CHAR;

IN createMode : INTEGER) : Database;
ASK METHOD Of(IN item : REFERENCE) : Database;
ASK METHOD IsOpenO(: BOOLEAN;
ASK METHOD IsVritableo(): BOOLEAN;
ASK METHOD IsEqualTo(II dbl : Database;

IN db2 ! Database) : BOOLEAN;
ASK METHOD CreateSegment() : Segment;

END OBJECT;

END MODULE

AllowExternalPointers: Allow database pointers to cross databases bound-
aries. After perfoming this operation on a database, the current process and
subsequent processes can store cross-database pointers there. When you ac-
cess a cross-database pointer, if the database it points to is not open, it will
be opened automatically.

B3

Close: Decrements the open count of the database. If the open count is 0
the database is dosed. If the open count is greater than 0 the database access
(read or read/write) is returned to the previous access mode. If this method
is called from within a transaction, the open count is not decremented until
the end of the current outermost transaction.

Create: Creates a new database with the specified pathname and mode.
The values for mode are the same as used in the Unix chmod command.
If the parameter if-exists.overwrite is set to true a new database will be
created even if one by that name already exists, otherwise a runtime error
will occur. A root directory of this database is automatically created if this
operation succeeds.

CreateSegment: Creates a segment in the database and returns an object
of type Segment.

Destroy: Deletes the database. This method must be called within a
transaction.

GetPathName: Returns the pathname of the database. This pathname
will always begin with a "/".

IsEaualTo: Returns true if dbi and db2 are the same database.
IsOpen: Returns true if the database is open, otherwise returns false.
IsWritable: Leturns true if the database is writable by the current pro-

cess. Returns false if the database has been opened for read-only or if the
process does not have write permission.

LookUp: Associates the database specified in pathname with an instance
of the class Database. If the database is not found a runtime error will occur
unless createMode is non-zero. If createMode is non-zero and the database
was not found a new database will be created. Note this method does not
open the database.

Of:. is method takes a variable of type object and returns the database
object it is stored in.

Open: Opens the database associated with the object. If readOnly is
non-zero the database is opened for read access only, otherwise it is open
for read/write.

RootDir: A pointer points to the root directory of this database is re-
turned which can be used for subsequent directory maninulation.

B4

B.3 Directories

The Directory class provides for structuring entry points into databases.
The named objects in a database are organized in an Unix-like directory
hierarchy. A directory may contain other directories and named objects.
The default working directory is the root directory ("/") which is created
automatically whenever a new database is created. From there, other named
objects and directory objects can be manipulated through directory class
methods. The methods of directory objects include Mkdir, Rmdir, Getdir,
Lookup, Insert, Remove and IL. Path names to named objects or directory
objects are specified either relative to the current working directory or by
using the complete path name starting with the root ("/").

DEFINITION MODULE Directory;

TYPE
Directory =
OBJECT

ASK METHOD Lookup (IN db : Database;
IN pathnuae ARRAY OF CHAR) : REFERENCE;

ASK METHOD Insert (IN dirname ARRAY OF CHAR;
IN item : REFERENCE;
IN name : ARRAY OF CHAR);

ASK METHOD Lookup (IN objneme : ARRAY OF CHAR) : REFERENCE;
ASK METHOD Insert (IN item : REFERENCE;

IN objnane : ARRAY OF CHAR) : BOOLEAN;
ASK METHOD Remove (IN objname : ARRAY OF CHAR) : BOOLZAN;
ASK METHOD Mkdir (IN dirname : ARRAY OF CHAR) : Directory;
ASK METHOD GetDir (IN db : Database;

IN dirnme : ARRAY OF CHAR) : Directory;
ASK METHOD Rudir (IN dirname : ARRAY OF CHAR) : BOOLEAN;
ASK METHOD La O;

END OBJECT;

END MODULE.

Getdir: Gets a directory object with its entry name "dir.name" in the
specified database. Returns a pointer to the directory if found, else returns
a NULL pointer.

B5

Insert: Inserts the object pointed to by "item" into the directory "dir",
with the name "name".

Lookup: Looks up a named object, which can be either an ordinary
object or a directory object, in the database. A pointer to the object is
returned.

Ls: Returns a list containing the names of the named objects and sub-
directories in this directory.

Mkdir: Makes a new subdirectory "dir..name" in this directory, and re-
turns a pointer to this new subdirectory.

Remove: Removes an entry for a named object "obj.name" from this
directory. Does not delete the object from the database. Returns I if the
object has been removed successfully, else 0.

Rmdir: Removes an entry for a named subdirectory "dir.name" from
this directory. Does not delete the subdirectory from the database. Returns
1 if the subdirectory has been removed successfully, else 0.

B.4 Collections and Cursors

The Collection module provides classes for grouping objects together and
accessing them. The objects contained in these collections are refered to as
elements. The following classes are found in the Collection module: List,
ParseList, Set, and Tree. Instances of these classes may be allocated in a
Database, a Segment, or a Configuration. They have methods to insert and
remove objects and for comparing various properties such as equal to and
greater than.

The cursor classes provide for iteration over the elements of the collection
casses. There is a cursor class associated with each of the collection classes.
An instance of a cursor object is created for a given instance of a collection
object. The cursor object has methods to return specific members of the
given collection object. Some of the cursor object's methods are first, last,
next, etc. The cursor object also has methods to insert objects into its
collection. Any number of cursor objects can be instanciated for a given
collection object. Cursor objects are most often allocated transiently.

DEFINITION MODULE Collection;
FROM Database IMPORT Database;

TYPE

B6

List *

OBJECT
ASK METHOD CreatelnDatabase(IN db : Database);
ASK METHOD Isgupty(: BOOLEAN;
ASK METHOD Insort(IN elm : REFERENCE);
ASK METHOD InsortFirst(IN elm : REFERENCE);
ASK METHOD Rmove(IN elm : REFERENCE);
ASK METHOD RmoveFirst();
ASK METHOD RemoveLastO;
ASK METHOD Size() : INTEGER;

END OBJECT;

ListCursor
OBJECT

ASK METHOD Create(IN list: List);

ASK METHOD FirstO: REFERENCE;
ASK METHOD InsertAfter(IN ref: REFERENCE);

ASK METHOD InsertBofore(IN ref: REFERENCE);
ASK METHOD IsNull(): BOOLEAN;

ASK METHOD Last 0: REFERENCE;
ASK METHOD More(): BOOLEAN;

ASK METHOD NextO: REFERENCE;
ASK METHOD Previous(0: REFERENCE;
ASK METHOD RmoveAt();

ASK METHOD Retrieve(): REFERENCE;
END OBJECT;

ParseList a

OBJECT
ASK METHOD Append (IN list : ParseList);

ASK METHOD CreatelnDatabase(IN db : Database);
ASK METHOD IsEmpty): BOOLEAN;
ASK METHOD Insert(IN elm : REFERENCE);
ASK METHOD InsertFirst(IN elm : REFERENCE);
ASK METHOD Rmeove(IN elm : REFERENCE);
ASK METHOD RemoveFirsto;
ASK METHOD RemoveLasto;

END OBJECT;

B7

ParseListCursor
OBJECT

ASK METHOD Create(IN parseList: ParseList);
ASK METHOD First 0 : REFERENCE;
ASK METHOD Inxertkfter(II ref: REFERENCE);
ASK METHOD Ir1ul1l0: BOOLEAN;
ASK METHOD Nort(: BOOLEAN;
ASK METHOD Next 0: REFERENCE;
ASK METHOD RIoveAt•;
ASK METHOD Retrieve0: REFERENCE;
ASK METHOD Tail: ParseList;

END OBJECT;

Set -
OBJECT

ASK METHOD CreatelnDatabase(IN db : Database);
ASK METHOD IsEmpty(: BOOLEAN;
ASK METHOD Insert(IN elm REFERENCE);
ASK METHOD Remove(II elm REFERENCE);
ASK METHOD Size() : INTEGER;

END OBJECT;

SetCursor
OBJECT

ASK METHOD Create(IN set: Set);
ASK METHOD Firsto: REFERENCE;
ASK METHOD Islull(): BOOLEAN;
ASK METHOD More(): BOOLEAN;
ASK METHOD Nexto : REFERENCE;
ASK METHOD RemoveAto;
ASK METHOD Retrieve(: REFERENCE;

END OBJECT;

Tree m
OBJECT

ASK METHOD CreatelnDatabase(II db : Database);
ASK METHOD Ishmpty(: BOOLEAN;

END OBJECT;

B8

TreeCursor u

OBJECT
ASK METHOD AddChild(IN itm : REFERENCE);
ASK METHOD Create(IN tree: Tree);
ASK METHOD FirstChildo: REFERENCE;
ASK METHOD IsFirstSiblingo: BOOLEAN;
ASK METHOD IsLautSiblingo: BOOLEAN;
ASK METHOD IsLeaf 0: BOOLEAN;
ASK METHOD IsRootO: BOOLEAN;
ASK M ETHOD More(): BOOLEAN;
ASK METHOD IextSibling): REFERENCE;
ASK METHOD Parento: REFERENCE;
ASK METHOD PrevStbling): REFERENCE;
ASK METHOD ReaoveAt1;
ASK METHOD Retrioveo: REFERENCE;
ASK METHOD Root 0: REFERENCE;

END OBJECT;

END MODULE.

List
CreateInDatabase: Creates a list in the specified database.
First: Sets the cursor at the first element of the list and returns a point-

erto the element.
Insert: Inserts the passed in item at the end of the list.
InsertFirst: Inserts the passed in item at the front of the list.
Remove: Removes the specified item from the list.
RemoveFirst: Removes the first element from the list.
RemoveLast: Removes the last element from the list.
Size: Returns the number of elements in the list.
ListCursor
Create: Creates a list cursor for the specified list.
InsertAfter: Inserts the passed in object after the current element in the

list.
InsertBefore: Inserts the passed in object before the current element in

the list.
IsNull: Returns 0 (false) if the cursor is located at a valid element of the

list; returns l(true) otherwise.

B9

Last: Positions the cursor at the last ekment of the list and returns a
pointer to the element.

More: Returns 1(true) if the cursor is not at the last element of the list;
returns O(false) otherwise.

Next: Advances the cursor to the next element of the list and returns a
pointer to the element.

Previous: Moves the cursor to the previous element of the list and returns
a pointer to the element.

RemoveAt: Removes from the list the element at which the cursor is
currently located.

Retrieve: Returns a pointer to the element of the list at which the cursor
is currently located.

ParseList
Append: Appends the passed in list to the end of the target list. This is

done by physically attaching the passed in list to the end of the target list
and not by making a copy of the passed in list. Hence, changes made to one
list may affect the other.

Create: Creates a list in the specified database and returns a pointer to
the created list.

Insert: Inserts the passed in item at the end of the list.
InsertFirst: Inserts the passed in item at the front of the list.
Remove: Removes the specified item from the list.
RemoveFirst: Removes the first element from the list.
RemoveLast: Removes the last element from the list.
ParseListCursor
Create: Creates a parse list cursor for the specified list.
First: Sets the cursor at the first element of the list and returns a pointer

to the element.
InsertAfter: Inserts the passed in object after the current element in the

list.
IsNull: Returns O(false) if the cursor is located at a valid element of the

list; returns l(true) otherwise.
More: Returns l(true) if the cursor is not at the last element of the list;

returns 0(false) otherwise.
Next: Advances the cursor to the next element of the list and returns a

pointer to the element.
RemoveAt: Removes from the list the elemerl- at which the cursor is

currently located.

BIO

Retrieve: Returns a pointer to the element of the list at which the cursor
is currently located.

Tail: Retuins the tail of the list starting from the current location of the
cursor.

Set
Create: Creates a set in the specified database and returns a pointer to

the created set.
IsEmpty: Returns l(true) if the set is empty O(false) otherwise.
Insert: Inserts the passed in item into the set.
Remove: Removes the specified item from the set.
Size: Returns the number of elements in the set.
SetCursor
Create: A set cursor is created for a particular set which is specified

when the set cursor is created.
First: Sets the cursor at the first element of the set and returns a pointer

to the element.
IsNull: Returns O(false) if the cursor is located at a valid element of the

set; returns l(true) otherwise.
More: Returns l(true) if the cursor is not at the last element of the set;

returns O(false) otherwise.
Next: Advances the cursor to the next element of the set and returns a

pointer to the element.
RemoveAt: Removes from the set the element at which the cursor is

currently located.
Retrieve: Returns a pointer to the element of the set at which the cv-sor

is currently located.
Tree

Create: Creates a tree in the specified database, with the object pointed
to by the argument root as the root of the tree. Returns a pointer to the
created tree.

IsEmpty: Returns l(true) if the tree is empty; returns O(false) otherwise.
TreeCursor
AddChild: Adds the passed in item as a child of the current node.
FirstChild: Advances the cursor to the first child of the current node

and returns a pointer to the object stored therein.
IsFirstSibling: Returns true (1) if the current node is the first sibling,

false (0) otherwise.
IsLastSibling: Returns true (1) if the current node is the last sibling,

false (0) otherwise.

BiI

IsLeaf: Returns true (1) if the current node is a leaf, false (0) otherwise.
IsRoot: Returns true (1) if the current node is the root of the tree, false

(0) otherwise.
NextSibling: the cursor to the next sibling of the current node, if any,

and returns a pointer to the object stored therein.
Parent: Moves the cursor to the parent of the current node and returns

a pointer to the object stored therein.
PrevSibling: Advances the cursor to the previous sibling of the current

node, if any, and returns a pointer to the object stored therein.
RemoveAt: Removes the current node from the tree, if it does not chil-

dren. Does nothing otherwise.
Retrive: Returns a pointer to the object stored in the current node of

the tree.
Root: Sets the cursor at the root of the tree and returns a pointer to the

element.

B.5 Configurations

The Configuration is the unit of version control. Instances of the Configu-
ration class provide a means to specify groupings of objects that are to be
treated as a unit for version control. Object instances of any type may be
allocated into a given Configuration. This includes objects of type Configu-
ration, thus the programmer can organize subgroups of related objects with
configurations to any level. Configuration objects are the unit of both ver-
sion control and database locking. They can be thought of as long duration
transactions on the database. There can be no conflict when a Configuration
is checked out to a given application as other applications can also check
out versions of the Configuration. Configurations provide the mechanism
to achieve change management in shared environments. Some of the meth-
ods of the class Configuration include check out, check out on a branch,
and check in. As versions of a configuration are checked out, changed, and
checked back in, a version tree is formed that permits users to go back to
any previous version. There are methods for traversing the version tree of
a particular Configuration object to retrieve past versions. In all of the
methods of the Configuration class if the parameter recursive is true, the
function of that method will be applied to all subconfigurations of the given
configuration. Note that Configurations must be used within the context of
Workspaces.

B12

DEFINITIOM NODULE Configuration;

FROM Segment IMPORT Soeent;
FROM Workspace IMPORT Vorkspace;

FROM Database IMPORT Database;

TYPE
Configuration
OBJECT

ASK METHOD Create (IN db: Database;
IN nmae ARRAY OF CHAR) : Configuration;

ASK METHOD Chockin (II db : Database;
IN nam : ARRAY OF CHAR;
IN recursive : BOOLEAN);

ASK METHOD Checkout (II db : Database;

II name : ARRAY OF CHAR;
"IN recursive : BOOLEAN);

ASK METHOD CheckoutBrmnch (IN db Database;

IN name : ARRAY OF CHAR;

IN branchiame : ARRAY OF CHAR;

IN versionName :ARRAY OF CHAR;
IN recursive : BOOLEAN);

ASK METHOD Resolve (IN itm : REFERENCE;

II name : ARRAY OF CHAR): REFERENCE;

ASK METHOD Lookup (IN db : Database;
IN name : ARRAY OF CHAR) : Configuration;

ASK METHOD Morge (II db : Database;

IN we : Workspace;
IN name : ARRAY OF CHAR);

ASK METHOD Successor (IN db : Database;

IN name : ARRAY OF CHAR) : Configuration;
ASK METHOD Predecessor (II db : Database;

IN name : ARRAY OF CHAR) : Configuration;

END OBJECT;

END MODULE.

B13

Checkin: Removes the current version of the configuration from the cur-
rent workspace, puts it in the parent workspace, freezes it, and makes it
current for the parent on the branch that contains it.

Checkout: Creates a new version of the configuration and inserts it into
the current workspace. If the parameter recursive is true, all subconfigura-
tions of the configuration are checkout as well.

CheckoutBranch: Creates a new version of the configuration and inserts
it into the current workspace, but a new branch will be created.

Create: Creates a configuration in the specified database. This creates
a branch containing the newly created configuration. This initial version of
the configuration is set to the default for the current workspace.

Merge: Checks out the specified configuration and calls SetSuccessor to
set it to the new version.

Predecessor: Returns a pointer to the configuration that is the pre-
decessor of the current configuration. This does not change the current
configuration in the workspace. This method returns false if there is no
predecessor.

Resolve: Takes a pointer to an object in one version of a configuration
and returns a pointer to the corresponding version of the same object in
another version of the configuration.

Successor: Returns a pointer to the successor of the specified configura-
tion.

B.6 Workspaces

The Workspace class is related to the use of Configurations. Workspace
objects provide a way to structure shared and private access to Configuration
objects. All manipulation of Configurations must take place within a current
workspace. Configurations are checked in and out of workspaces. Calls to
the various check out methods of Configuration objects are relative to the
current workspace. Workspace objects are linked (or nested) hierarchically
into a workspace tree. Applications can set the access privileges to parts
of this workspace tree to control access (and hence change). There is must
be a "global workspace". Workspace objects are then allocated within the
context of this global workspace. Workspaces combined with Configurations
supply the needed concepts for computer supported collaborative work. The
Workspace class include methods to create child workspaces of a parent
workspace, to get the parent of given workspace, and to set a Workspace

B14

object to be the current workspace.

DEFINITION MODULE Workspace;

FROM Database IMPORT Database;

TYPE
Workspace
OBJECT

ASK METHOD CreateGlobal (IN db : Database;
IN name : ARRAY OF CHAR) : Workspace;

ASK METHOD Create (IN db : Database;
IN name : ARRAY OF CHAR;
IN parent : Workspace) : Workspace;

ASK METHOD Resolve (IN db : Database;
IN name : ARRAY OF CHAR;
IN item : REFERENCE) : REFERENCE;

ASK METHOD Lookup (I1 db : Database;
IN pathname : ARRAY OF CHAR) : Workspace;

ASK METHOD SetCurrent (IN vs : Workspace);
ASK METHOD Current () : Workspace;
ASK METHOD GetParent () : Workspace;
ASK METHOD GetName (OUT name : ARRAY OF CHAR);
ASK METHOD Of (IN item : REFERENCE) : Workspace;
ASK METHOD Resolve (IN item : REFERENCE): REFERENCE;

END OBJECT;

END MODULE.

Create: Creates a child of the current workspace in the specified database.
This new child workspace can be referenced by the specified name.

CreateGlobal: Creates a global workspace in the specified database and
with the specified name. This is the root workspace from which all child
workspaces are rooted.

Current: Returns a pointer to the current workspace object.
GetName: Returns the name of the current workspace.
GetParent: Returns a pointer to the parent workspace of the current

workspace. This method does not make the parent current.

B15

Lookup: Returns a pointer to the serched workspace in the database.
Of: Returns a pointer to a workspace in which the specified object re-

sides.
Resolve: Returns a pointer to the version of the specified object made

visible by the current workspace.
SetCurrent: Sets the workspace to be the current workspace. Note, this

takes effect at the beginning of the next transaction.

B.7 Segments

Databases are composed of some number of Segments. Segments can be
thought of as the smallest unit of memory that is transferred from persis-
tent to transient storage. Every database is created with an initial segment.
As objects are stored in the database additional segments are created au-
tomatically. The Segment class is provided as a means of clustering groups
of objects for performance reasons. As a segment is the unit of memory
transfer, significant performance improvements can be gained by physically
collocating related objects. One of the methods of the Database class is the
creation of Segments. This method returns a Segment object. Methods of
the Segment class include those to determine state information, control size,
and destruction.

DEFINITION MODULE Segment;

TYPE
Segment
OBJECT

ASK METHOD Create(IN db : Database) : Segment;
ASK METHOD Databasef() : Database;
ASK METHOD Destroyo;
ASK METHOD Of(IN item : REFERENCE) : Segment;

END OBJECT;

END NODULE.

Create: Returns a pointer to the newly created segment in the specified
database.

B16

DatabaseOf: Returns a pointer to the Database object containing this
segment.

Destroy: Deletes this segment from the database.
Of: Returns a pointer to the segment object containing the specified

object.

B17

Appendix C

Software Engineering
Classes

This appendix provides a listing of C++ header files describing the classes
that make up a persistent object framework used to model the IMPORT
language. This model is called an intermediate representation. We refer
to these classes as Software Engineering Environment Classes because they
provide the basis for implementation of the language and its support tools.
These classe are used in conjunction with Yacc++ [29] and the GOOD
interface (see Appendix ??) to implement an object repository for ImroRT
programs. Yacc++ is used to build the lexer and parser. The classes,
through the GOOD interface, provide for persistent storage and manipulation
of IMPORT compilation artifacts.

The following header files are displayed below: id.seec.h, id-type.expr.h,
;d.dsymtab.h and iLsemantics.h. The id.seec.h file defines the IMPORT/DOME
software engineering environment support classes. These classes provide a
model of the basic features of the language: the module, class, method and
the declaration. Also contained in this file are the abstract syntax node (ast)
and ast list classes. The second section consists of the id-type-expr.h file.
This file contains the type-expression class and its associated list class. The
symbol table (Symtab) and support classes, the scope, symtab.entry and
symtab.entryiist are shown in the next section. Finally, the semartic action
controller class, id.semantic.controller, is shown. This class implements the
semantics of the language and calls to methods of this class are triggered by
the syntactic states determined by input to the parser.

Cl

C.1 Software Engineering Environment Classes

/* Interface for the ISLE SEE classes used to represent a program in
an OODB. */

#ifndef ISEECH
#define ISEECH
#include <time.h>
#include <sys/stdtypes.h>

#include <id-oodb-externs.hh>
#include <id.oodb.hh>
#include <id.symtab.h>
#include <id-type.expr.h>
#include <iLoperator.h>

class Declaration {
public:
scope *local-scope;
symtab.entry.list *decls;
char *src.code;

/* Constructor for Declarations. Takes a pointer to the top scope
* of the Module, a collection of declarations, and an optional
* pointer to the source code, if it is decided that the source be
* needed to be stored in some manner.

Declaration(scope *Is, symtab.entryilist *d, char *sc = NULL);
-Declarationo;

};

#define DEFINITION-MODULE 0
#define IMPLEMENTATION-MODULE
#define INTERFACE-MODULE 2

class idModule {
public:

C2

int module-type;
char *module.name;
id-oodbilist *idClasses;
id.oodb ist *importedamodules;
Declaration *deci;
long last-touch;
int code-generation;
int has-externaLobj;

/* Constructor for Module. The type and name of the module must be specified
* Will automatically create an empty collection of classes and a
* declaration object with the scope Is.
,/

idModule(int t, char *mn, scope ,As = NULL, let cg = 1);
-,idModuleo;1;

class idClas {
public:
symtab.entry *se;
symtab.entrylist ,super-classes;
type-expressionilist *storage.type;
id-oodblist *methods;
id-oodbist ,tell-methods;
Declaration ,decl;
int is-forward; /* is it a forward declaration? ,/
int is-external; /, is it an external declaration? ,/
id-oodbilist ,gknow; /, das knowledge ,/

/, Constructor for id.Class. Only the symbol table entry need be
* specified. Will automatically create an empty collection of methods,
* and declaration object with scope Is.

id-Class(symtab.entry ,iLse, symtab.entryilist *sc,
type.expression.list ,st, scope *Is, int is-f = 0,
id-oodbilist ,gk = NULL);

^-idClass0;

C3

/* Abstract syntax tree ,/

class ast.list : public id-oodblist {
pubac:

type-expression-ist *convert-.to.type-exprlisto;
1;

class ast-node {
public:
oper op; /* defined in oper.h ,
ast.node *obj-instance; /* vafid only for method invocations ,/
symtab.entry *method; /* va/id only for method invocations ,/
type-expressionilist *which-type;
union f

char *s;
int i;
float f;
char c;
ast-list *operand-list;
symtab-entry *se;

} semantic-value;

/* Discriminator required by ObjectStore ,
int discriminantO;

/* Constructors for ast-node. We need constructors for the different
• types in the union.

ast.node (oper Lop, type.expression.list *wt);
ast-node (oper Lop, type.expressionilist *wt, char ,i4s);
astaiode (oper Lop, type.expressionlist *wt, int Li);
ast-node (oper Lop, type-expression-list *wt, float Ui);

C4

ast..node (oper Lop, type-expressionilist *wt, char Lc);
ast-node (oper Lop, type-.expressionilist *wt, symtab..entry *iLse);
ast-node (oper Lop, type-expressionifist *wt, ast-node *obji,

symtab-entry *m, ast-ist *ol);
ast-lode (oper Lop, type-.expressionilist *wt, ast-ist *ol);
'.'ast-nodeO;
/* deletes the type expression list and all the included type..exp.-msions. *
void del-which-typeo;

/* Stuff required by ObjectStore4
private:
int os-discriminator-value;
void os..set-discriminator-.valueQ;

1;

enum method...ypes I M-NOTMETHOD, MASK, M-TELL, M..QUERY, M-.OPERATOR,
M..CONSTRUCTOR, M-DESTRUCTOR 1

typedef enum method-.types method-.types;

class id-.Method{
pV Aic:
symtab..entry *se; /* Entry in symbol table *
method-.types method-.type;
type-expressionilist *parm..type;
type..expressionilist *storage..type;
symtab-entryilist *parms;
int is-.public;
symtak-entry *of...cass;
mnt body-.declared;.
ast-iode *asf; /* Abstract Syntax Forest4
Declaration *decl;

/* Constructor for Method. Only the symbol table entry need be specified.
* Will automatically create an empty abstract syntax forest, and a
* declaration object with the scope Is. 4/

id..Method(symtab..entry *i..se, method-.types mt, type..expressionilist *pt,
type-expressionilist *st, symtab..entryiist *fp, imt p,

C5

symtabkentry *oc, int bd = 0, ast.node ,a = NULL,
scope *Is = NULL);

"-idMetbodo;1;

#endif

C.2 The Type Expression Class

/* Class definition for the type.expression dam used by the symbol table,
* and for static semantic checking. Must include "id-oodb.h" and
* "id.oodb.externs.h", the generic object-oriented database interface
* before including this file.,/

#ifndef TYPE.EXPRESSIONH
#define TYPE.EXPRESSIONH

#include <id-oodb.extern&.bh>

#include <id.ocdb.hh>

extern class symtab.entry;

enum atomic-type { T.NULL, TLENUM, TINT, T.REAL, TBOOLEAN, T.STRING,
T.CHAR,

T-ADDRESS, T.ARRAY, TLOBJECT, TLIST, T.VARIABLE,
T.PREDICATE, T.ARITHMETIC);

typedef enum atomic.type atomic-type;

class type-expression {
public:
int linenumber;
atomic-type id.type;
union {

int size; /, valid only for arrays
symtab.entry *id.class; /* valid only of objects and enum types ,/

) u;

C6

/* These are the constructors for the type.expresion. 4
type-expression(int In, atomic-type t);
type.expression(int In, atomic.type t, int s=O);
type.expression(int In, atomic.type t, symtab.entry *se=NULL);

/, Discriminator required by ObjectStore 4
int discriminantO;

/* overloaded operators 4
int operator=-=(type.expression& t);

1;

class type-expression-list : public id.oodbiist {

public:
/* Given that tel and "this" are valid type.expression-lists, verifies
* that tel matches. Returns a 1 when it matches and a 0 when
* it doesn't.

int compare-type(type-expression.Jist *tel);

/* Given that tel is a valid type.expression-list, returns a copy
* of it.

type.expressionilist *make.copy(type.expression.list *tel);

/* Given that tel is a valid type.expression Jist, appends its contents
, to this list. The original list is unchanged.

type.expression-list *append(type.expressionilist *tel);

/* Returns the only type.expression if type.expressionlist is singleton,
, NULL otherwise.

type-expression *singletonO;

/* Returns a I if the list is empty, 0 otherwise 4
int emptyO;

C7

/* Deletes elements of the list, preserving only those type-expressions

• whose atomic-type is t

void destroy.elements(atomic.type t = TOBJECT);

/. Prints a list */
void printf-elementso;

#endif

C.3 The Symbol Table Class

/* Class definition for the symbol table object and related sub-objects used
• in the IMPORT/DOME compiler.

#ifndef SYMTABH
#define SYMTABH

#include <id.type.expr.h>
extern class ast-node;
extern class astJlist;
extern class Method;
extern class idClass;

/* Using the predifined fist type for symtab.entry-list and block-list. ,/
class symtab.entryilist : public id.oodb-list {
public:

/* Compares the names in this list with the names in sel. Returns I if
• they are the same, 0 of not.

int compare-names(symtab.entry.list *sel);

/* Deletes the elements of the list ,/

C8

void destroy-elementso;

I* Prints a lst */
void printf-elementsO;

1;

/* This class defines a scope within a symboLtable. It contains a
* pointer to the previous scope, the current scoping depth, and a local
* table for identifiers declared in this scope.

#define SIZEOF.SCOPE 53 /* Hash table size within scope ,/

class scope {
public:
scope *previous;
int depth;
symtab.entrylist *decls;
symtab.entry-list *local.symtab[SIZEOF.SCOPE];

/* Constructor for scope. The scope, p, is the previous scope.
* The new scope will have previous point to p and depth set to
* p->depth + 1.

scope(scope *p);

/* Constructor for scope. The previous pointer and depth will be
• set to O.

scopefj;

/* Prints out the entries in the scope. ,/
void printLelements0;

/* Destroys the symbol table.entries associated with this scope.
• Also destroys the list decls.

C9

void destroy-elementsO;

1;

/* This class defines a symbol table entry, consisting the name as seen
* in the source, a generated name that is used in the C++ translation,
* a type, and a pointer to a type expression_ _ to a scope, if the entry
* is for an object. The scope type is used s a convenience for semantic
* checking.

enum symbol-types { S.CONST, STYPE, SVARIABLE, SPARAMETER,
SCLASS,

S-METHOD, SDOMESYMBOL);
typedef enum symboLtypes symboLtypes;
enum parmxio-types { P-NOTPARM, PIN, P.OUT, PINOUT);
typedef enum parmio.types parm.io.types;

class symtab.entry {

public:
char *symbol-name;
char *generated.name;
symboLtypes symbol-type;
astilist *uselist; /* contains a ist of abstract syntax

• trees where the variable appears. */
int mark; /* used in searching */

union I
type-expressionilist *storage.type; /. valid for variables, methods,

• type names and constants. */
idClass *obj; /, valid for objects (classes) 4
Method *method; /* valid only for methods ,

) u;

parm-io-types parm-io.type; /* valid only for parameters ,/
ast.node *const-value; /* valid only for constants ,/

CIO

int is-public; /. valid only for members of objects ,
int istatic; /. valid for external C++ c.la methods ,
int uity; /* valid only for dome 4
int is-prim; /* symbols 4

/* These are the constructors for the symbol table entry. The generated
* name is created by this method from the module name and the user's
* symbol name.
*/

/* Used for variables, type names, formal parameters. 4
symtab.entry(char *sn, symboLtypes at, type-expression-list ,st-t,

int p=1, parm-io.types pit=PNOTPARM);

/* Used for methods. */
symtab.entry(char *sn, Method ,m, int p=1);

/, Used for constants ,/
symtab.entry(char ,sn, symboLtypes st, ast-node ,cv);

/I Used for classes (objects) */
symtmb.entry(char ,sn, symboLtypes st, idClawu ,iobj);

/, Used for imported classes and types /
symtab.entry(char ,sn, symtab.entry ,i.entry);

/* Used for dome symbols ,/
symtab.entry(char *sn, int ar, int ip);

/* Used to rename a generated name for EXTERNAL C++ calls
n needed by INTERFACE MODULE

void rename.genname(char ,newgenname, Jnt is.stat = 0);

/, Discriminator required by ObjectStore 4
int discriminantO;

1;

ClI

/* This class implements a symbol table for an object-oriented, lexically
• scoped language.
,/

class Symtab {

public:
scope *cur-scope;
scope *cur-module;
scope *globaLscope;
symtab.entry *cur.obj;

/* Constructor for a symbol table. Sets the current scope to the
* global scope.

SymtabO;

/, Creates a new scope and sets the current scope to it. ,
void enter.new .scopeo;

/* Sets the current scope to the scope applicable when defining methods

* of a class. Returns a I if successful, 0 if the class has not been
* defined in the symbol table.
* Exceptions: Will give an error if not currently in the module scope.

int enter.obj..scope(char *symbol);

/, Sets the current scope to the scope that was surrounding it.

• Exceptions: Will give an error on an attempt to leave a global
• scope or when the previous scope was NULL.

void leave.scopeO;

/* Inserts a local or member variable into the symbol table if it
* does not already exist. Ifit already exists, it returns
* a NULL, otherwise it returns a pointer to the symtab.entry.

symtab.entry ,insert.var(char *symbol, type-expressionlist *t);

C12

/* Inserts a constant into the symbol table if it
* does not already exist. /fit already exists, it returns
* a NULL, otherwise it returns a pointer to the symta&bentry.

symtab.entry *insert-const(char *symbol, ast-node *a);

/, Inserts a type name into the symbol table if it
* does not already exist. If it already exists, it returns
* a NULL, otherwise it returns a pointer to the symtab.entry.
,/

symtab-entry *insert-type(char *symbol, type.expression.list *t);

/, Inserts an class name into the module scope; creates a new
* scope for the members of the class and sets the current
* scope to it.
* Returns a NULL if the class already exists, or if not in the
* module scope. Returns a pointer to the symtab.entry otherwise.
,/

symtab.entry ,insert.obj(char *symbol);

/, Inserts a method name into the symbol table under the current
* class being defined. Parameters are the name of the method, the
* Method object and whether the method is public. Returns a NULL if
* the symbol is already defined. Returns the symtab.entry otherwise.

symtab.entry *insert-method(char *symbol, Method ,m, int p=1);

/, Inserts an imported item into the symbol table under the current
* module being defined. Takes the name of the item in this module

* and a symbol table entry from the imported module. Returns the
* symtab entry created, NULL if the entry already exists.
,/

symtab.entry ,insertimported(char *symbol, symtab.entry ,imported-entry);

/, Inserts a dome symbol entry into the current scope. ,/
symtab.entry ,insert-dome.symbol(symtab.entry *se);

C13

/* Returns a pointer to a symbol table entry if the symbol is a
* method or a field in the object. Returns a NULL if it is not
* found.
,/

symtab.entry *is.in.obj(char *symbol, symtab.entry ,object.entry,
int ,err.code = NULL,
type-expreuuion-list ,parmnlist = NULL);

/* Returns a pointer to a symbol table entry if the symbol is a
* superd.ass of object. Returns a NULL if it is not
* found.

symtab.entry *is.a.superclaus(char *symbol, symtab.entry *object.entry);

/, Returns a pointer to the symbol table entry if the symbol is
* defined in the current context. Returns a NULL if it is not
* found.
,/

symtab.entry *is-in(char *symbol);

/, Returns a pointer to the symbol table entry if the symbol is
* defined in the immediate scope. Returns a NULL if it is not
* found.
,/

symtab.entry ,isiniocal(char *symbol);

/* Returns a pointer to the symbol table entry if the symbol is
i defined in the outermost (module) context. Returns a NULL if it
* is not found. This is mainly an optimisation feature; dases
* can only be defined in the module level, and if we are looking for
* a class definition, it can only be at the module level.

symtab.entry ,isin..module(char *symbol);

/, Returns a pointer to the symbol table entry if it is found in the
• scope sc, NULL otherwise. (CEH must check parms for methods)

C/

C14

symtab..entry *15Jfln-cope(char *symbol, scope *sc,
type..expressionilist *parmilist=NULL)

/* Returns a pointer to the symbol table entry if there is a name
*match. Does not check signature. Returns NULL it no match.

symta~b.eatry *is-iame-in..scope(char *symbol, scope *sc);
1;
extern Symtab *symboLtable, .lib.symbol-ta~ble;

#endif

C.4 The Semantic Action Controller Class

/* Zateiface for the semantics/object builder for the IMPORT language *

#ifudef SEMANTICS...H
#define SEMANTIOS-11

#include <id-.seec.h>
#include <id..type..expr.h>
#include <id..symtab.h>

class id-.semantic..controller{
public:
Module *cur..module;
parm-io-.types cur..parmio..type;
jut is-.public;
int is-.overridden;
Module *imrol,*-i.e module;
Method *cur-nethod;
type-.expressionilist *cur..parn-type;
symtab..entryilist *cur..parm-..ames;
id..oodbilist *cur-.methods;
id..oodbiist *cur..classes;
id..oodb.Jist *cuLtelLmethods;

C15

/* Constructor for semantic controller */
id-semantic-controllero;

/* Imports all entries in the Module m into the cur.module. IKm
• is NULL, has no effect.

void importModule(int In, Module *m);

/* Builds a module object and sets the cur-module to it. Tes a module
* type and an optional local scope. A new scope will be created for the
* module, and the cur-scope of the symbol-table will be set to this. The
* cur.module of the symboLtable will also be set to this scope value.
* The cur.module of the semantic.coant will be set to the module object.
,/

void build_-Module(int In, int t, char *mn, scope ,As = NULL);

/* Builds user defined types and stores in symbol table
• Side effect is that it destroys iden.
,/

void build-user-type(int In, char * iden, type-expressionlist *tel);

/* Builds a symtab entry for the variable iden of type te and inserts
* it into the symbol table.
* Side effect: frees the iden string.
*/

void buildv-ar(int In, char *iden, type.expressionlist *te);

/* Builds a symtab entry for the constant with value v and inserts
* it into the symbol table.
* Side effect: frees the idea string.

void build-const(int In, char *iden, ast.node *v);

/, Builds a singleton type-expreesion-fist or inserts a type-expression
* of atomic-type t into list tel. s is the optional size argument in
* the case of declaring arrays. In is the line number of the declaration.

C16

• The second version is for classes. c is the class

type.expressionuist *build-type(int In, atomic-type t,
type-expresaion-ist *tel=NULL, int s=O);

type-expressioniist *build.type(int In, atomic-type t, symtab.entry *c);

/* Determines if the class or type named idea exits, and if so, returns its
• storagetype.

type.expressioniist *get-type(int In, char *iden);

/* Builds an ast-node with operator op, and a type.expression with atomic
type

a a. In is the line number of the expression.

I/
ast.node *build-arith.ast(int In, oper op, atomic-type a, char ,datavalue);
ast.node *build.arith.ast(int In, oper op, atomic-type a, fot datavalue);
ast-node *build-arith-ast(int In, oper op, atomic.type a, float datavalue);
aatiiode ,build..arith..ast(int in, oper op, atomic..type a, char datawalue);

ast-node *build-arith.ast(int In, oper op, atomic-type a,
symtab.entry *datavalue);

/* Builds an ast-node with operator op, and operand-fist made up of the
• operando.

ast-node *build.unary.ast(int In, oper unary.op, ast.node *operand);
astnode *build-arith.-st(int In, oper binary-op, char *string-xep,

ast-node ,left.operand, ast.node *right-operand);

/* Builds an ast-node for an identifier (local variable or object member)
* as a location for data. The second version handles array references.

ast.-node *buildioc-ast(int In, char *string.rep,
symtab.entry *inherited.class = NULL);

astanode *buildloc-ast(int In, ast.node *base, ast.node *index);

C17

/* Builds an ast-node for an wsignment..statement
&at..node *build..asuign..ast(int In, oper aasign-.op, char *string..rep,

ast..node .loc, &at..node .expr);

/* Builds an ast-node for AND and OR4
ast-node *build..boolean..ast(int In, oper boolean-.op,

ast-node *left..operand, astaiode *rig~ht-.operand);

/* Builds an ast-iode for relations4
ast..node *bufld..relation-uat(int In, oper reLop, char *string-.rep,

ast..node *Ieft..operand, ast-.node *right-operand);

/* Builds an ast-node for statement-lists. Hf v is NULL, creates a new
* ast..aode, otherwise, it adds the ast-.node for the statement s to the
* statement-list result v.

ast..node *build stmtilist(ast-aode *s, ast..node *v);

/* Builds up an IF statement and from its component parts. If v is NULL,
* creates a new ast-node, and in this case, opd must contain the ast..node
* for the expression. After the expreasion is inserted, the then clause,
* and the elsif clauses must be inserted in order, and finally the
* else clause.

ast..uode *build if..stmt(int In, ast..node *opd, ast-.node *v);

/* Builds an elsif clause. 4/
ast..node *build..elsif(int In, ast..node *expr, ast..node *stmt);

/* Builds an else clause */
ast..node *build..else(ast-iode *stmt);

/* Builds a return statement, the expression expr is optional.4
ast..node *build..return(int In, ast..node *expr = NULL);

/* Builds a while statement. 4/
ast..node *build-.while(int In, ast-.node *expr, ast..node *stmt);

cis

/* Builds a repeat statement. s/
ast-node *build.repeat(int In, ut-node ,stmt, ast.node *expr);

/* Builds a loop statement. */
tat.node ,buildloop(aat.node *stmt);

/* Builds an exit statement. ,
ast.node ,build-exitO;

/* Builds an halt statement. ,
ast-node *build.halto; ,

/, Builds a for statement. The arguments are /inenumber, index
* variable, initial value, final value, up or down (up = 1, down =

* 0), statement lst, and optional by clause

ast-node *build.for(int In, sat..node ,idx, ast.node *i.val,
ast-node ,f.val, Int up, ast-node *stmt,
ast-node ,by.exp = NULL);

/, Builds up an CASE statement and from its component parts. If v is NULL,
* creates a new ast-node, and in this case, opd must contain the ast.node
* for the expression. After the expression is inserted, the WHEN dauses,
* and the OTHERWISE clause must be inserted in order.

ast-node ,build-case(int In, aut.node ,opd, sat.node ,v);

/, Builds the WHEN and OTHERWISE clauses for the CASE statement.
dcis

• the case label for the WHEN clause.
,f

ast.node *build.case-clause(oper op, ast-node *stmt, ast.node ,d = NULL);

/, Builds a block statement. 4/
ast.node ,build-block(ast-node ,stmt);

f/, Builds a method named idea as a member of the current object 4
Method ,build.method(int In, char ,iden, method-types mt,

C19

type-expressionist *return.type=NULL);

/* provides for renaming of external C++ methods in the INTERFACE mod-
ule */

void rename-ext.method(int In, char *iden, char ,newname, int is.stat =
0);

/* provides for renaming of external C++ fields in the INTERFACE mod-
ule ,/

void rename.ext-field(int In, char ,iden, char ,newname);

/* Builds a class named iden and sets cur.obj in the symbol table to
• the new id-class obj created.
,I

id-Class *build class(int In, char ,iden, symtab.entryiist ,sc = NULL,
int isif = 0);

/, Builds a list of symbol table entries of supercdasses of a cdass.
* If v is NULL, creates a new list and returns the new list as the
* result.

symtab.entry-list ,build.superclasses(int In, char ,superclass.id,
symtab.entrylist, v = NULL);

/* Sets up the symbol table and the semantic controller for parsing
* methods. Handles both IMPLEMENTATION and INTERFACE methods
* the cname paramater 1s for renaming DEFINITION MODULE dlass names
* for C++ compatability.
,/

void setup-methods(int In, int mod.:vpe, char ,iden, char ,cname=NULL);

/, Associates an method body with the prototype. 4/
void fillin-method(Method ,m, ast.node ,i.asf);

/, Builds a list of arguments. If v is NULL creates a new ast-iist
* and inserts the first argment and returns it. Otherwise, inserts
* the arguments in v and returns it.

C20

ast~ijt *build -arg-list(int In, ast-.node *expr, astijat *v);

/* Sets up the inherited dam variable for method invocations. q1
5yrntab..entry *setupinherited(int In, char einheuited-.dauss.iden);

/* Builds a method invocation. If the method has Do arguments a NULL
ius given as the argument to this procedure.

ast-node *build..meth-inv(int In, char *iuiherited...dws,
method-.types mt, ast-node *obj..expr,
char *method..name, astiist *args = NULL);

/* Checks that a method invocation is a valid expression .
void check..methinv(int In, sast-node *meth-inv);

/* Builds a terminate statement.q
ast-node *build-.terminateo;

/* Builds an INTERRUPT clause 4
ast..node *build-.oninterrupt(ast..node *stmts);

/* Builds WVAIT DURATION statement */
ast-aode *build...wait-dur~int hIn, sat-node *expr, ast..node .satmts,

ast..node *int..cause=NULL);

/* Builds WAIT FOR statement */
ast..node *build-waitlfor(int In, astnode *obj-expr, char *method-aiane,

ast-list *a~rgs, ast-uode *stmts,
astaiode *in-clauue =NULL,
char *inherited-dcaus NULL);

/* Builds WAIT FOR TRIGGER statement *
aut-node *build..waitior..trigger(int hIn, ast-aode *obj..xpr,

astaiode *stmts,
ast-iode *int-lause =NULL);

C2 I

/* Builds interrupt trigge statement
ast..node * buildjnterrupt..trigger('int In, &at-node *obj...epr,

ast-node smeth..name);-

/* Builds a key for an appliation .
void buildicey(int In, char *key..name, char smdl.umchar *class..uam,

char *Ineth'3d-lame. astfist *args);

/* Retrieves a definition module with the mod ule-.name and returns it.
*If the module is not found, NULL isreturned.

Module *retrieve..module(int In, char *module-iame);

/* Sets up the modules and for import */
void setup..buildimport(int In, char *module..aame);

/. Builds symbol table entries for imported items 4
void buildixnport(int In, char *sourceiden, char *taget-iden = NULL);

/* BUILT-IN FUNCTIONS 4/

ast..node *build-.a~bs(int In, oper ir..op, ast.node* arg);

ast-node *build-.cap(int hn, oper char-op, ast-node. arg);

ast-.node *build-.chartoatr~int In, oper char-op, aut-node* arg);

nastnode *build..chr(int In, oper int-op, aut..node* arg);

ast-node *buildifloat~int In, oper int..op, ast-node* erg);

ast-node *buildinttostr~int]a, oper int-op, autiaode* arg);

ast-node *build-lower(int In, oper utr.op~Ast-uode* arg);

C22

ast.node *build..max(int In, oper scahlu.op, ast..node* arg);

wt-node *build-maxofgint In, oper scAle..op,astiist* arg);

ast..node *build..min(int In, oper scalar.op, st-node* arg);

astunode *build..minofgint In, oper scA~e-op,astiist* arg);

"as-node *build-odd (iut In, oper scaiar.op~ast..node* arg);

&at-node *build..ord(int In, oper ord..op,ast-node* arg);

&at..node *build persistent(int In, oper op,asuiode* arg);

ast..node *build..position(int In, oper str..op,ast..node* argI,
ast..nodc* arg2);

ast..node *build..realtostr(int In, oper r..op, ast..node* arg);

ast..node *build..round(int In, oper reaLop, ast-node* a~rg);

ast..node *build..schatr(int In, oper str..op~ast..node* argi,
ast-.node* a~rg2);

ast-node *id-.semantic..controlier::builc-simtime(int In);

"at-node *build..strcat(int In, oper op~astiiut arg);

ast..node *build..strlen(int In, oper str-op, sat-.node *arg);

ast..node *build strtoint(int In, oper str..op, ast..node* a~rg);

"at..node *build..strtoreal(int In, oper str-op, ast-node* arg);

ast..node *build..substr(int In, oper str..op,ast.node* argI,
ast..node* arg2,ast..node* arg3);

"atunode *build..trunc(int In, oper reaLop~astaiode* arg);

C23

asetnode *build-upper(int In, oper utr-op, ast..node'e arg);

ast-tode *h~ild..val(int In, oper ord-.op,ast-node* argI, aat..node* arg2);

/. BUILT-IN PR~OCEDUJRES */

ast-node *1ml)iIc~c(int In, oper ',p,ast..node* arg);

ast-node *bitild-dec(int In, oper op,ast-node* argi, ast-node* arg2);

ast..node Omui(lddispose(int In, oper op, aat-node* arg);

ast-node *buihldinc(int In, oper op,ast-iode* arg);

ast..node *buididinc(int In, oper op,ast-node* argi, ast-jode* arg2);

ast..node *build-input(int In, oper scaie..op, astiist* arg);

aat.node *build-insert(int In, oper str..op,ast-node* argl,
ast-nodk* arg2,ast-node* arg3);

ast..node *)ImiILdoutput(int In, oper scaie..op, ast-iate' arg);

/* Builds an ast-node for making a persistent object */
ast-node *1)elih-pnew(int In, ast-node* argi, ast-iode* a~rg2,

astlist* args=NULL);

ast..node *buiild-repiace(Int In, oper str..op,ast..node* argi,

ast-iode* arg2,ast~node* arg3,ast..node* arg4);

ast-node *buikldstrtochar(int In, oper op,ast..node* argi, ast node* arg2);

1. Builds an ast-node for making a transient object */
astatode .build .tnew(int In, ant-.node .Ioc, astilist *args= NULL);

/* Builds interrtipt statement */
ast-tode *hwiid-iituerrupt(int In, oper i-op, ast-.node *obj-expr,

C24

astimofle *meth-name);

/* END BUIII)INS ,/

private:
/, Internal error printer s/
void internal -error(int code);
/, Semantic Error Afessage Printer ,/
void semant.ic-error(int lineno, int code, char *message = NULL);

extern idosemvintic-contro1Ier ,semantic-cont;

#endif

C25

Appendix D

Generic Object Oriented
Database Interface
Specification

D.1 Introduction

This appendix contains the C++ classes defining the Generic Object-Oriented
Database (GOOD) interface developed for IMpOnT/DoME. The clases listed
here constituite our internal release 4.1 of the GOOD interface. The GOOD
was developed to insulate implementation at the persistent object stor-
age level from any particular database and to premit rapid porting of IM-
PORT/DOME to other database hosts. This interface is implemented for
ObjectStore [7] and we are currently developing an implementation for the
DARPA OpenDB [37].

D.2 Database

A database provides a way to manipulate objects in persistent storage and
is organized as an Unix-like directory hierachy. All persistent objects in the
database must have a named entry-point into the database which is done by
DNEW macro. They then can be manipulated through the directory objects
(see directory class below) where they reside. An open count is maintained
on the number of times a database has been opened. When the open count
is decreased to 0, the database is closed. All databases are automatically
closed when the program terminates.

DI

id-oodb.database::root dir()
id-oodb-directory *root-diro;
Returns a pointer to the root directory in this database.

idoodb_database::close()
void close(;
Decrements the open count by one if the resulting open count is greater than
one. If the open count is zero the database is closed. If called from within
a transaction, the above does not take place until the end of the, transaction.

id..oodbhdatabase::create()
static id-oodb-database *create (char *pathname, int mode = 0664,
int if-exists-overwrite = 0);
Creates a database with the specified path name and mode. The database
is also opened for reading and writing and its open count is incremented.

id-oodb-database::getp ath.nameo
char *get-pathname(;
Returns the pathname of the target database.

id-oodb-cdatabase::is.open()
int is-openo;
Returns l(true) if the target database is open, O(false) otherwise.

id-oodb-database::is-writable()
int is-writableo;
Returns 1(true) if the database is writable by the current process. Returns
0(false) if the database has been opened for read-only or if the process does
not have write permission.

idoodbdatabase::lookup()
static id-oodb.database *lookup (const char *pathname, int createinode =

0);
Returns a pointer to the database with the specified pathname, but does
not open it. Returns 0 if the database is not found.

idoodb_database::of()

D2

static id.oodb-database *of (void *item);
Returns a pointer to the database in which the object item resides.

id-oodb-database::open()
void open (int read-only);
Increments the open count of the database and opens it for the specified
access type - read-only if 1(true) or read-write if O(false)

static id-oodb.database *open (const char *path-name, int read-only = 0);
Increments the open count of the specified database "path-name". Sets
up the access type specified by "read-only" and returns a pointer to that
database.

id-oodb-database::operator ()
int operator ==(id.oodbkdatabase *that);
Returns 1(true) if the target database is same as the database pointed to
by "that".

id-oodb-database::allow-externaLpointers()
void allow-external-pointerso;
Extend the validity of cross-database pointers. After this function is called,
cross-database pointers can be stored in the current process and subsequent
processes.

idoodb_database::destroy()
void destroy 0;
Deletes the database for which this function is called. Must be called inside
a transaction.

id-oodb.database::create-segmemt()
id.oodb-segment *create-segment);
Returns a pointer to the newly created segment in the specified database.

D3

D.3 Directory

The named objects in a database are organized in an Unix-like directory
hierarchy. A directory may contain other directories and named objects.
The default working directory is the root directory ("/") which is created
automatically whenever a new database is created. Path names to other
directories or named objects are specified relative to the current working
directory or by using the complete path name starting with the root.

idoodbdirectory::lookup()
static void *lookup (id-oodb.database *db, const char *path-name);
Looks up a named object, which can be either an ordinary object or a di-
rectory object, in the database. A pointer to the object is returned.

void *lookup (const char *objjname);
Looks up an object by the object's string name in this directory and returns
a pointer to that object.

id-oodb-directory::insert()
static void insert (const char *dir, void *item, const char *name);
Inserts the object pointed to by "item" into the directory "dir", with the
name "name".

void insert (void *item, const char *obj.name);
Inserts the object pointed to by item into this directory and names it with
the specified name "obj_,name".

idoodbdirectory::Is0
void Is ();
Returns a list containing the names of the named objects and subdirectories
in this directory.

id-oodb-directory::remove()
int remove (const char *objaname);
Removes an entry for a named object "obj.name" from this directory. Does
not delete the object from the database. Returns 1 if the object has been
removed successfully, else 0.

idoodbdirectory::mkdir()

D4

id.oodb-directory *mkdir (const char *dir-name);
Makes a new subdirectory "dir.name" in this directory, and returns a pointer
to this new subdirectory.

id-oodb-directory::rmdir()
int rmdir (const char *dir-name);
Removes an entry for a named subdirectory "diraname" from this directory.
Does not delete the subdirectory from the database. Returns 1 if the sub-
directory has been removed successfully, else 0.

id-oodb-directory::getdir()
static id-oodb-directory *getdir (id.oodb.database *db, const char *dirjname);
Gets a directory object with its entry name "diraname" in the specified
database. Returns a pointer to the directory if found, else returns a NULL
pointer.

D.4 Lists and Cursors

D.4.1 List

id-oodb.list::create0
static id-oodb.list *create (id.oodb.database *db);
Creates a list in the specified database and returns a pointer to the created
list.

static id-oodbilist *create (id.oodb.configuration *conf);
Creates a list in the specified configuration and returns a pointer to the
created list.

id-oodblist::insert()
void insert (void *item);
Inserts the passed in item at the end of the list.

id-oodb-list::insert-_first()
void insert-first (void *item);
Inserts the passed in item at the front of the list.

D5

id-oodb-list::remove()
void remove (void *item);
Removes the specified item from the list.

id.oodb-list::remove-first()
void remove-firsto;
Removes the first element from the list.

id-oodbilist ::removelast()
void remove-lasto;
Removes the last element from the list.

id-oodb-list ::size()
int size();
Returns the number of elements in the list.

D.4.2 List Cursor

A list-cursor is created for a particular list which is specified when the
list-cursor is created.

id-oodb-list-cursor::flrst()
void *firstO;
Sets the cursor at the first element of the list and returns a pointer to the
element.

id-oodbist-cursor0
id-oodbiUst-cursor (id.oodblist *list);
Constructor - creates a list-cursor for the specified list.

id-oodb-list-cursor::insert-after()
void *insert after(void *item);
Inserts the passed in object after the current element in the list.

id-oodbiist-cursor::insert-before()
void *insert-before(void *item);
Inserts the passed in object before the current element in the list.

D6

id-oodb-Iist-cursor::is-null()
int is-null();
Returns 0(false) if the cursor is located at a valid element of the list; returns
1 (true) otherwise.

id-oodb-fist-cursor::last()
void *lasto;
Positions the cursor at the last element of the list and returns a pointer to
the element.

id.oodbilist-cursor::more()
int moreo;
Returns l(true) if the cursor is not at the last element of the list; returns
0(false) otherwise.

id.oodb.list-cursor::next()
void *next(;
Advances the cursor to the next element of the list and returns a pointer to
the element.

id-oodb-fist-cursor::previous()
void *previouso;
Moves the cursor to the previous elemert of the list and returns a pointer
to the element.

id-oodb-list-cursor::remove.at0

void remove.at();
Removes from the list the element at which the cursor is currently located.

id-oodb-ist-cursor::retrieve()
void *retrieve();
Returns a pointer to the element of the list at which the cursor is currently
located.

D7

D.4.3 Parse List

id-oodb-parse-list ::append()
void append (id-oodb.parse-list *1);
Appends the passed in list to the end of the target list. This is done by
physically attaching the passed in list to the end of the target list and not
by making a copy of the passed in list. Hence, changes made to one list may
affect the other.

id.oodb.parseiUst::create()
static id-oodb.parse-list *create (id.oodb.database *db);
Creates a list in the specified database and returns a pointt- to the created
list.

id-oodb-parse-iist::insert()
void insert (void *item);
Inserts the passed in item at the end of the list.

id-oodb-parse-listt::insert-_irst()
void insert-first (void *item);
Inserts the passed in item at the front of the list.

id-oodb-parse.ist::remove()
void remove (void *item);
Removes the specified item from the list.

id-oodb-parse.list::removefirst()
void remove-firsto;
Removes the first element from the list.

id-oodb-parse..iit::removelast()
void removelasto;
Removes the last element from the list.

DO

D.4.4 Parse List Cursor

A list-cursor is created for a particular list which is specified when the
list.cursor is created.

id-oodb-parse-iistcursor: :first()
void *firsto;
Sets the cursor at the first element of the list and returns a pointer to the
element.

id-oodb-parse-list-cursor()
id-oodb-parse-ist-cursor (id-oodb-parse-list *list);
Constructor - creates a list-cursor for the specified list.

id-oodb-parse-listcursor: :insert _after()
void insert.after(void *item);
Inserts the passed in object after the current element in the list.

id-oodb.parselistcursor::is-null()
int is-null();
Returns 0(false) if the cursor is located at a valid element of the list; returns
1 (true) otherwise.

id-oodb.parse-list-cursor::more()
int more();
Returns 1(true) if the cursor is not at the last element of the list; returns
0(false) otherwise.

id.oodb-parse-list-cursor:: next()
void *nexto;
Advances the cursor to the next element of the list and returns a pointer to
the element.

id-oodb-parse/ist-cursor::remove-at()
void remove-ato;
Removes from the list the element at which the cursor is currently located.

id-oodb-parse-ist-cursor: :retrieve()
void *retrieveo;

D9

Returns a pointer to the element of the list at which the cursor is currently
located.

id-oodb-parse-listcursor: :tail()
id-oodb-parsejlist *tail();
Returns the tail of the list starting from the current location of the cursor.

D.4.5 Set

id-oodb.set::create()
static id-oodb.set *create (id-oodb-database *db);
Creates a set in the specified database and returns a pointer to the created
set.

static id.oodb-set *ceate (id-oodb-configuration *conf);
Creates a set in the specified configuration and returns a pointer to the cre-
ated set.

id.oodb.set::is-empty()
int is-empty 0);
Returns 1(true) if the set is empty O(false) otherwise.

id.oodb.set::insert()
void insert (void *item);
Inserts the passed in item into the set.

id.oodb.set::remove()
void remove(void *item);
Removes the specified item from the set.

id.oodb.set::size()
int sizeo;
Returns the number of elements in the set.

DIO

D.4.6 Set Cursor

A set-cursor is created for a particular set which is specified when the
set-cursor is created.

id-oodb-set-cursor::fIrstO
void *first);
Sets the cursor at the first element of the set and returns a pointer to the
element.

id-oodb.set-cursor()
id oodb.set-cursor (id-oodb.set *set);
Constructor - creates a set-cursor for the specified set.

id._oodb-set-cursor::is -null()
int is-null();
Returns 0(false) if the cursor is located at a valid element of the set; returns
1(true) otherwise.

id-oodb-set-cursor::moreo
int moreo;
Returns 1(true) if the cursor is not at the last element of the set; returns
0(false) otherwise.

id-oodb-set-cursor::next()
void *next();
Advances the cursor to the next element of the set and returns a pointer to
the element.

id-oodb-set-cursor: :remove-at ()
void remove-ato;
Removes from the set the element at which the cursor is currently located.

id-oodb-set-cursor::retrieve()
void *retrieve();
Returns a pointer to the element of the set at which the cursor is currently
located.

DII

D.4.7 Tree

id-oodb-tree::create()
static id-oodb-tree *create (id-oodb-database *db, void *root);
Creates a tree in the specified database, with the object pointed to by the
argument root as the root of the tree. Returns a pointer to the created tree.

id.ood b-tree: :is-empty()
void is-empty ();
Returns 1(true) if the tree is empty; returns 0(false) otherwise.

D.4.8 Tree Cursor

A tree-cursor is created for a particular tree which is specified when the
tree-cursor is created.

id.oodb-tree.cursor::add-child()
void add-child(void *item);
Adds the passed in item as a child of the current node.

id-oodb-tree-cursor: :first _child()
void *first-child(;
Advances the cursor to the first child of the current node and returns a
pointer to the object stored therein.

id-oodb-tree-cursor()
id-oodb-tree-cursor (id-oodb-tree *tree);
Constructor - creates a tree-cursor for the specified tree.

id-oodb-tree-cursor::is-trst-sibling0
int is-first-sibling(;
Returns true (1) if the current node is the first sibling, false (0) otherwise.

id-oodb-tree-cursor::isJast-sibling()
int is-last-sibling();

Returns true (1) if the current node is the last sibling, false (0) otherwise.

D12

id_oodb_treecuraor::isleaf()
int isleafo;
Returns true (1) if the current node is a leaf, false (0) otherwise.

idoodbtreecursor::isroot()
int is-rooto;
Returns true (1) if the current node is the root of the tree, false (0) otherwise.

id-oodb-tree-cursor::next-sibling()
void *next-sibling);
Advances the cursor to the next sibling of the current node, if any, and re-
turns a pointer to the object stored therein.

idoodb_treecursor::parent()
void *parentO;
Moves the cursor to the parent of the current node and returns a pointer to
the object stored therein.

id-oodb-tree-cursor::prev.sibling()
void *prevysibling);
Advances the cursor to the previous sibling of the current node, if any, and
returns a pointer to the object stored therein.

id-oodb.tree-cursor::remove-at()
void remove-atO;
Removes the current node from the tree, if it does not have any children.
Does nothing otherwise.

idoodbtreecursor::root()
void *rooto;
Sets the cursor at the root of the tree and returns a pointer to the element.

id_oodb_treecursor::retrieve()
void *retrieve(;
Returns a pointer to the object stored in the current node of the tree.

D13

D.5 Workspace

idoodbbworkspace::create()
static id.oodb.workspace *create(id-oodb-database *db, const char *name,
id.oodb-workspace *parent=O);
Constructs a workspace called "name", which can not be omitted, with the
specified parent "parent". If no parent is specified, the new workspace is
made a child of the current workspace. Returns a pointer to the created
workspace.

id.oodb.workspace::id..oodb-workspace()
id.oodb.workspace(id.oodb-database *db, const char *name, id.oodb-workspace
*parent=O);

This constructor is essentially the same as id.oodb-workspace::create). It
constructs a workspace called "name" with the specified parent "parent" in
the specified database "db". If no parent is specified, the new workspace is
made a child of the current workspace.

id.oodb-workspace::create-global()
static id-oodb.workspace *create-global(id-oodb-database *db, const char
*name);

Creates a global workspace with the specified name which can not be omit-
ted in the specified database "db". A pointer to the created workspace is
returned.

idoodbworkspace::current()
static id.oodb-workspace *current(;
Returns the current workspace, which is the workspace on which the most re-
cent invocation of set-current() has been made. If no invocation of set-current
has been made in the current process, then the global workspace is returned
as the current workspace.

idoodbworkspace::get._name()
const char *get-name(;
Returns the name of the current workspace.

idoodbworkspace::getparent()
id.oodb-workspace *get-parent);
Returns a pointer to the parent workspace of the current workspace, or 0 if

D14

the current workspace is the global workspace.

idoodbworkspace::of()
static id.oodb-workspace *of(void *item);
Returns a pointer to the workspace that maps the object pointed to by item.
Returnb Lhe current workspace if item is a non versioned object.

idoodbworkspace::resolveO
void *resolve(id0oodb-database *db, const char *path-name, void *item);
Returns a pointer to the version of the object, pointed to by "item", which
is made visible by the specified workspace "path-name".

void *resolve(void *item);
Returns a pointer to the version of the object that is made visible by this
workspace.

idoodbbworkspace: :set -current()
static void set-current(id .oodb-workspace *a-ws);
Sets the workspace "a-ws" as the current workspace. This action takes effect
only at the beginning of the next transaction.

id-oodb-workspace::lookup()
static id.oodb.workspace *lookup(id-oodb-database *db, const char *pathjname);
Returns a pointer to the workspace "path-name" in the specified database
"db" if it is found, otherwise returns a NULL pointer.

D.6 Configuration

id.oodb-configuration::checkin()
void checkin (id-oodb-database *db, const char *name, int recursive = 1);
Removes the configuration "name" from the current workspace in the spec-
ified database "db", freezes it and inserts it in the parent workspace. The
configuration is also made current for the parent on the branch that contains
it.

id._oodb-configuration: :checkout()

D15

void checkout (id-oodb-database *db, const char *name, int recursive = 1);
Creates a new version of the target configuration "name" and inserts the
new version into the current workspace with write access in the specified
database "db". The branch containing the new version is also made the
current branch.

id-oodb-conflguration::checkout-branch()
void checkout-branch(id-oodb-database *db, const char *name, char *branch-
name=O, int recursive= 1);
Creates a new version of the target configuration "name" and inserts the new
version into the current workspace with write access in the specified database
"db". dike checkout, the new version will not be the same branch as the
current branch, instead it will be an alternative version.

id-oodb-configuration::create()
static id.oodb.configuration *create(id-oodb database *db, const char *name);
Creates a configuration called "name" in the specified database and returns
a pointer to it.

id-oodb.conflguration::merge()
void merge (id-oodb-database *db, id.oodb.workspace *ws, char *name);
Creates a new version of the target configuration and makes that the suc-
cessor of the target configuration and the configuration "name" which is in
workspace "ws". That is, this function merges two versions of configura-
tions, one in current workspace the other in "ws", into a new version which
is the successor of both configurations.

id-oodb-configuration::predecessor0
id.oodb-configuration *predecessor(id-oodb-database *db, const char *name);
Returns a pointer to the predecessor version of the target configuration and
uses the predecessor version.

id-oodb-conflguration::successors()
id.oodblist *successor(id.oodb.database *db, const char *name);
Returns a pointer to the successor version of the target configuration and
uses the successor version.

id-oodb-conflguration::resolve()
void *resolve(id-oodb.database *db, const char *name);

D16

Returns the version of the object "name" that is mapped by the target con-
figuration in the specified database "name".

id-oodb.configuration::lookup()
static id-oodb-configuration *lookup(id-oodb-database *db, const char *name);
Returns a pointer which points to configuration "name" in the specified
database "db".

D.7 Segment

id-oodb.oodb.segment::create()
id.oodb.segment *create(const id.oodb-database *db);
Creates a segment in the specified database and returns a pointer to the
created segment.

id-oodb-oodb.segment::database-of()
id.oodb.database *database.ofo;
Returns a pointer to the database in which the target segment resides.

id_ooodboodbsegment::destroy()
void destroyO;
Deletes the target segment from the database. This results in the destruc-
tion of all the data the segment contains. This action cannot be undone by
aborting the transaction.

id_oodbb_oodbsegment::of()
static id.oodb.segment *of (void *item);
Returns a pointer to the segment where the object pointed to by item re-
sides.

D.8 Macro Defines

Several macros have been defined to ease the process of allocating and deallo-
cating objects in persistent database. These macros include DNEW, CNEW,

D17

SNEW, and DELETE. DNEW is used for allocating objects into database,
CNEW is specifically used for allocating objects into the specified configu-
ration in the database for versioning purpose. SNEW is used for allocating
objects into the specified segment for clustering purpose. Delete is simply
used for deleting objects in the database.

IDOODBTXNBEGIN, IDOODBTXNCOMMIT, and IDOODB_-TXNABORT
are transaction related macros. The first macro starts a transaction and con-
trols the access mode provided by the argument read-only. If the argument
read-only is true (1), then the access mode is read only otherwise the access
mode is read-write. The second one signals the transaction has been com-
mitted and the last aborts the transaction.

CNEW()
CNEW(a.conf,type.name,num)
Creates an array of "num" number of persistent instances of the type speci-
fied by the character string "type-name", in the configuration pointed to by
"a-conf".

DELETE
Deletes transient or persistent instances.

DNEW()
DNEW(a-db,type-name,num)
Creates an array of "num" number of persistent instances of the type spec-
ified by the character string "type-name", in the database pointed to by
"a.db".

SNEW()
SNEW(a-seg,type.name,num)
Creates an array of "num" number of persistent instances of the type spec-
ified by the character string "type-name", in the segment pointed to by

"a-seg".

ID_OODBTXN-BEGIN0
IDOODBTXN.BEGIN(read-only)
Begins a transaction with read-only access to objects if 1(true) is specified.
If O(false) is specified, it begins a transaction with write access allowed to
objects. Nested transactions are not allowed in the generic interface.

DI8

IDOODBTXN-COMMIT
Commits the current transaction.

IDOODBTXNABORT
Aborts the current transaction.

D19

DISTRIBUTION

Chief of Enges
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATrN: CERD-L

Fort Belvoir, VA 22060-5516
ATIN: CECC-R

USA Engineer School 65473-5331
ATTN: USAES-DCD

Defense Technical Info. Center 22304
ATTN: DTIC-FAB (2)

9
+84

9/93

1upff wo nVuced an recycmld pip. IL& QOVuNMEITPFOM OFRCt 1,IS-01040667

